
5 Some technical details

In our experience, following step-by-step working examples is the best way to understand

any nontrivial algorithm. To make things right, every technical detail counts. Over the

years, we have received many requests asking for exactly how3DNA parameters are cal-

culated. Here, we provide details of some key 3DNA components so that interested users

could understand them better and possibly apply the same techniques to other related sit-

uations.

As an example, we will use the first dinucleotide stepGG/CCfrom A-DNA adh026

(with base sequenceGGGCGCCC), included in 3DNA distribution, which shows Slide and

Roll more clearly.

5.1 Least-squares fitting procedures

3DNA starts with a least-squares procedure to fit a standard base with an embedded refer-

ence frame to an observed base structure. It implements a closed-form solution of absolute

orientation using unit quaternions first introduced by Horn(1987). This method can be ap-

plied when one or both of the structures are perfectly planar. This section is based on the

following URL:

http://rutchem.rutgers.edu/˜olson/jmb/ls_fit.html

• Standard reference frame (Olsonet al., 2001)

Using base G as an example, its xyz coordinates in standard reference frame in PDB

format are as follows (check BASEPARS directory for other cases):

ATOM 1 C1’ G A 1 -2.477 5.399 0.000
ATOM 2 N9 G A 1 -1.289 4.551 0.000
ATOM 3 C8 G A 1 0.023 4.962 0.000
ATOM 4 N7 G A 1 0.870 3.969 0.000
ATOM 5 C5 G A 1 0.071 2.833 0.000
ATOM 6 C6 G A 1 0.424 1.460 0.000
ATOM 7 O6 G A 1 1.554 0.955 0.000
ATOM 8 N1 G A 1 -0.700 0.641 0.000
ATOM 9 C2 G A 1 -1.999 1.087 0.000
ATOM 10 N2 G A 1 -2.949 0.139 -0.001
ATOM 11 N3 G A 1 -2.342 2.364 0.001
ATOM 12 C4 G A 1 -1.265 3.177 0.000

• Least-squares fitting procedure

Least-squares fitting in 3DNA uses only (available) ring atoms: nine for purines (’

N9 ’ ; ’ C8 ’ ; ’ N7 ’ ; ’ C5 ’ ; ’ C6 ’ ; ’ N1 ’ ; ’ C2 ’ ; ’ N3 ’ ; ’
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C4 ’ ), and six for pyrimidines (’ N1 ’ ; ’ C2 ’ ; ’ N3 ’ ; ’ C4 ’ ; ’ C5 ’ ;

’ C6 ’ ).

Using the first G residue in chain A ofadh026 , denoted thereafter asA_G1, the

corresponding 9 ring atoms in standard (sX, sY, sZ ) and experimental (eX,

eY, eZ ) structures are as follows:

sX sY sZ eX eY eZ

1 N9 -1.289 4.551 0.000 11.417 -2.904 -4.880

2 C8 0.023 4.962 0.000 10.759 -1.995 -5.662

3 N7 0.870 3.969 0.000 11.469 -0.913 -5.867

4 C5 0.071 2.833 0.000 12.638 -1.108 -5.156

5 C6 0.424 1.460 0.000 13.759 -0.273 -5.036

6 N1 -0.700 0.641 0.000 14.767 -0.848 -4.249

7 C2 -1.999 1.087 0.000 14.663 -2.116 -3.719

8 N3 -2.342 2.364 0.001 13.625 -2.934 -3.830

9 C4 -1.265 3.177 0.000 12.625 -2.328 -4.545

--------------------------------------------------- -----------

s_ave: -0.6897 2.7827 0.0001 e_ave:12.8580 -1.7132 -4.771 6

Wheres_ave ande_ave are the geometric centers of the nine ring atoms in the standard

and experimental bases respectively.

We collect the two sets of coordinates in the9 x 3 matrices S and E corresponding respec-

tively to the standard and experimental bases. We then construct 3 x 3 covariance matrix

(C) betweenS andE using the following formula:

1 1

C = ------- [S’ E - --- S’ i i’ E]

N - 1 N

=

-0.6849 0.8393 -0.7418

-2.1919 -0.5683 -0.7888

0.0001 -0.0002 0.0001

HereN, the number of atoms in each base, is 9, and i is anN x 1 column vector consisting

of only ones.S’ andi’ are the transpose of matrixS and column vectori respectively.

From the nine elements ofC, we subsequently generate the4 x 4 real symmetric matrixM

using the expression:

- -

| c11+c22+c33 c23-c32 c31-c13 c12-c21 |
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M = | c23-c32 c11-c22-c33 c12+c21 c31+c13 |

| c31-c13 c12+c21 -c11+c22-c33 c23+c32 |

| c12-c21 c31+c13 c23+c32 -c11-c22+c33 |

- -

=

-1.2530 -0.7886 0.7419 3.0312

-0.7886 -0.1167 -1.3526 -0.7417

0.7419 -1.3526 0.1165 -0.7889

3.0312 -0.7417 -0.7889 1.2533

The largest eigenvalue of matrixM is 3.5896, and its corresponding unit eigenvector (qi,

i = 0 -- 3 ) is:

[ q0 q1 q2 q3 ] = [ 0.5460 -0.2921 0.0524 0.7835 ]

The rotation matrixR is deduced from theqi as:

- -

| q0q0+q1q1-q2q2-q3q3 2(q1q2-q0q3) 2(q1q3+q0q2) |

R = | 2(q2q1+q0q3) q0q0-q1q1+q2q2-q3q3 2(q2q3-q0q1) |

| 2(q3q1-q0q2) 2(q3q2+q0q1) q0q0-q1q1-q2q2+q3q3 |

- -

=

-0.2331 -0.8862 -0.4004

0.8249 -0.3983 0.4012

-0.5150 -0.2368 0.8238

Following coordinate transformation with matrixR, the translation vector for the least-

squares fit between standard and experimental bases is defined as:

o = e_ave - s_ave R’ = [15.1632 -0.0362 -4.4678]

Hereo andR are the origin and orientation, i.e., the reference frame, of the experimental

base. Moreover,R is guaranteed to be orthogonal.

The least-squares fitted coordinates (F) of the standard base atoms on the experimental struc-

ture are then given by:

F = S R’ + o

=

11.4307 -2.9119 -4.8818

10.7607 -1.9933 -5.6548
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11.4432 -0.8991 -5.8558

12.6361 -1.1058 -5.1753

13.7706 -0.2678 -5.0319

14.7583 -0.8689 -4.2591

14.6659 -2.1180 -3.6958

13.6138 -2.9091 -3.8208

12.6427 -2.3449 -4.5688

HereS is the (N x 3) matrix of the original coordinates of the standard base.

The difference matrix (D) betweenF andE, the (N x 3) matrix of the original coordinates

of the experimental base, and the root-mean-square (RMS) deviation between the two struc-

tures are found to be:

D = E - F

=

-0.0137 0.0079 0.0018

-0.0017 -0.0017 -0.0072

0.0258 -0.0139 -0.0112

0.0019 -0.0022 0.0193

-0.0116 -0.0052 -0.0041

0.0087 0.0209 0.0101

-0.0029 0.0020 -0.0232

0.0112 -0.0249 -0.0092

-0.0177 0.0169 0.0238

RMS deviation = sqrt(sum(dˆ2)/N) = 0.0236

5.2 Base reference frames

Following the above least-squares procedure, we get the following for A_G1:

RMSD = 0.0236

o = [15.1632 -0.0362 -4.4678]

R = [

-0.2331 -0.8862 -0.4004

0.8249 -0.3983 0.4012

-0.5150 -0.2368 0.8238]

where the first column corresponds to x-axis, the 2nd to

y-axis, and the 3rd to z-axis respectively.

Similarly for B_C8 (i.e., C8 on chain B) which pairs withA_G1, we have the follow-

ing:
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RMSD = 0.0229

o = [14.9124 0.2803 -4.7498]

R = [

-0.2339 0.9100 0.3422 ==> -0.2339 -0.9100 -0.3422

0.7496 0.3930 -0.5326 ==> 0.7496 -0.3930 0.5326

-0.6191 0.1320 -0.7741 ==> -0.6191 -0.1320 0.7741]

Since their dot product is negative (-0.9884), the z-axis ofB_C8 is anti-parallel to that ofA_G1.

We reverse the y- and z-axes ofB_C8 (by a 180-degree rotation around the x-axis) to make its

z-axis parallel to that ofA_G1, as shown on the right side ofR following the arrows.

For A_G2, we have:

RMSD = 0.0171

o = [14.8757 2.9250 -2.4635]

R = [

-0.6807 -0.6274 -0.3781

0.3893 -0.7471 0.5388

-0.6205 0.2195 0.7528]

For B_C7, which pairs withA_G2, we have:

RMSD = 0.0213

o = [14.4982 3.0313 -2.3001]

R = [

-0.5797 0.6905 0.4326 ==> -0.5797 -0.6905 -0.4326

0.3207 0.6814 -0.6579 ==> 0.3207 -0.6814 0.6579

-0.7491 -0.2426 -0.6165 ==> -0.7491 0.2426 0.6165]

5.3 General rotation matrix

The general rotation matrixRû(ϕ) (Eq. [1]) describes a rotation of magnitudeϕ about an arbitrary

unit vectorû = u1̂i+u2̂j+u3k̂, wherêi, ĵ, k̂ are unit vectors along the axes of the local Cartesian

frame:

Rû(ϕ) =









cosϕ+ (1 − cosϕ)u2

1
(1 − cosϕ)u1u2 − u3 sinϕ (1 − cosϕ)u1u3 + u2 sinϕ

(1 − cosϕ)u1u2 + u3 sinϕ cosϕ+ (1 − cosϕ)u2

2
(1 − cosϕ)u2u3 − u1 sinϕ

(1 − cosϕ)u1u3 − u2 sinϕ (1 − cosϕ)u2u3 + u1 sinϕ cosϕ+ (1 − cosϕ)u2

3









,

(1)

5.4 Base-pair parameters

Given the above base reference frames forA_G1,B_C8 andA_G2,B_C7, we can calculate the

base-pair parameters (Shear, Stretch, Stagger, Buckle, Propeller, and Opening). The procedure is

exactly the same as for step parameters detailed below. Herewe just give the parameters for the
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two base-pairs, and users who are interested in knowing the details should work them through and

should get exactly the same numbers.

Shear Stretch Stagger Buckle Propeller Opening

A_G1-B_C8 -0.4683 -0.1516 -0.0156 -5.4713 -6.7936 -2.8660

A_G2-B_C7 -0.1643 -0.2112 -0.3299 -4.6532 -9.8008 2.7357

The “middle frame” used in calculating the bp parameters becomes the bp reference frame. For

base pairA_G1-B_C8, we have:

o1 = [15.0378 0.1221 -4.6088]

R1 = [

-0.2323 -0.8985 -0.3724

0.7889 -0.3980 0.4682

-0.5689 -0.1851 0.8013]

For base pairA_G2-B_C7, we have:

o2 = [14.6869 2.9781 -2.3818]

R2 = [

-0.6319 -0.6594 -0.4072

0.3583 -0.7144 0.6010

-0.6873 0.2339 0.6877]

These two reference frames are used in the next two sections to calculate step and helical

parameters.

5.5 Step parameters

Given the 2 bp reference frames above, the following procedures are used to calculate step parame-

ters (Shift, Slide, Rise, Tilt, Roll and Twist). It follows CEHS definition, as detailed in SCHNAaP.

1. Hinge axis is the cross product between z1 (3rd column ofR1) and z2 (3rd column ofR2):

[-0.3724 0.4682 0.8013] x [-0.4072 0.6010 0.6877]

= [-0.1596 -0.0702 -0.0332]. When normalized, it becomes:

[-0.8993 -0.3953 -0.1870]

Geometrically, hinge axis is the intersection line betweenthe two base pair planes.

2. The RollTilt angle (Γ, i.e., net bending angle) is the magnitude between z1 and z2,which is

given by their dot product:Γ = 10.2221 Å.

3. Now we rotate R2 by (−0.5 ∗ Γ = −5.1111) degrees around the hinge axis (see Eq. [1]):
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R_hinge(-5.1111) = [

0.9992 -0.0152 0.0359

0.0181 0.9966 -0.0798

-0.0345 0.0804 0.9962]

R2’ = R_hinge(-5.1111) * R2 = [

-0.6616 -0.6396 -0.3914

0.4005 -0.7426 0.5368

-0.6340 0.1984 0.7475]

Similarly, we rotate R1 by (+0.5 ∗ Γ) degrees along the hinge axis:

R1’ = R_hinge(+5.1111) * R1 = [

-0.1982 -0.8986 -0.3914

0.7441 -0.3978 0.5368

-0.6381 -0.1848 0.7475]

By definition, the z-axes ofR1’ andR2’ (the third column) are the same, i.e., after sym-

metric rotations, we have perfectly aligned the z-axes of the two bps.

4. The x-, y- and z-axes of the “middle frame” are simply the average between those ofR1’

and R2’ , and by definition, they are orthogonal. The origin of the bp is the geometric

average ofo1 ando2 . For the above case, we have the “middle frame” as follows:

Rm = [

-0.4490 -0.8033 -0.3914

0.5977 -0.5955 0.5368

-0.6642 0.0071 0.7475]

om = [14.8624 1.5501 -3.4953]

5. The translational parameters (Shift, Slide, and Rise) are simply the projections of the vector

linking from o1 to o2 onto the x-, y-, and z-axes of the “middle frame”:

[Shift Slide Rise] = (o2 - o1) * Rm

= [-0.3509 2.8561 2.2270] * Rm

= [0.3853 -1.4033 3.3349]

6. Twist is the angle fromy1 to y2 (or from x1 to x2 of the “rotated”R1’ andR2’ matri-

ces respectively). Its sign is defined with reference to the “middle frame” z-axis (the 3rd

column ofRm), following right- handed rule for positive Twist angle. More specifically, the

magnitude of the angle betweeny1 andy2 is: 33.5296◦. The signe is determined by:

(y1’ x y2’) . z =

[-0.2162 0.2965 0.4129] . [-0.3914 0.5368 0.7475]

= 0.5524
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So Twist is positive.

7. The phase angle (φ) is the angle from the hinge-axis to the “middle frame” y-axis (2nd

column ofRm). By definition, hinge-axis lies in the xy-plane of the “middle-frame” since

it is perpendicular to the z-axis of the “middle-frame”. Thephase angle also has a sign

associate with it, determined in the same way as Twist shown above. In this case,φ =

+16.9598◦.

8. Roll is defined as:

Γ ∗ cos(φ) = 10.2221 ∗ cos(16.9598 ∗ π/180) = 9.7776◦.

Similarly, Tilt is defined as:

Γ ∗ sin(φ) = 10.2221 ∗ sin(16.9598 ∗ π/180) = 2.9818◦.

9. Overall, the six step parameters are:

Shift Slide Rise Tilt Roll Twist

0.3853 -1.4033 3.3349 2.9818 9.7776 33.5296

5.6 Local helical parameters

The geometric approach described below gives exactly the same numerical values as those from the

RNA(Babcocket al., 1994). The pivot point issue does not apply here: it is only used in defining

the base pair reference frame. Given the reference frames ofthe two base pairs, the procedure

used in 3DNA to calculate the local helical parameters (x-displacement, y-displacement, helical

rise, inclination, tip, and helical rise) is analogous to the one detailed above for step parameters, by

using a tip-inclination combination.

Please note that to define a local helical axis, we needtwo base-pair reference frames. 3DNA

finds the single-helical axis (which is actually dx× dy) that brings 1 to coincide with 2 by a Helical

Twist angle. The position which this helix passes through isdefined by Chasles’ theorem as detailed

in Figures 12 & 13 of Babcocket al. (1994). The calculation of x-displacement, y-displacement,

tip and inclination is then exactly as described in SCHNAaP (Lu et al., 1997a).

To make the above point clear, let’s use A1-A2-A3 triplet as an example. First, A1-A2 define

a local helical axis and a set of local base-pair helical parameters are calculated. In 3DNA, these

parameters are defined in a symmetric manner that bp A1:T1 andbp A2:T2 have exactly the same

values. Similarly, step A2-A3 defines another set of local base-pair helical parameters. Thus bp

A2:T2 has two sets of helical parameters associated with it depending on its context, i.e., either

with bp A1:T1 or with bp A3:T3. Moreover, the local Helical Rise and Helical Twist are directly

related to a dinucleotide step. These are the reasons that “Local base-pair helical parameters” as

given in 3DNA refer to base-pair steps. As a matter of fact, the schematic diagrams illustrating the

local helical parameters (x-displacement, y-displacement, inclination and tip) as given in 3DNA

website and this user’s manual were based on two perfectly overlapped base pair blocks.

Using the first GG/CC dinucleotide step inadh026 as an example, the detailed precedure is

as follows:
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1. The local helical axis is defined by the cross product of (x2 - x1 ) and (y2 - y1 ):

[-0.3997 -0.4307 -0.1183] x [0.2391 -0.3164 0.4190] =

[-0.2179 0.1392 0.2294], which when normalized, gives:

h = [-0.6303 0.4026 0.6638]

2. Local helical frame of base-pair 1:

• TipInclination angle (Ψ, in magnitude) is the angle between unit vectorsh andz1 ,

and is 17.2279◦.

• Hinge axis is defined by a cross product fromh to z1 , normalized to give:

[0.0399 0.8707 -0.4902] .

It lies in the xy-plane of local helical frame given below.

• RotateR1 through the above hinge axis by negative TipInclination angle (i.e.,−17.2279◦)

will align the resultant z-axis withh, which gives us the local helical reference frame:

H1 = R_hinge(-17.2279) * R1 = [

-0.1880 -0.7532 -0.6303

0.7504 -0.5242 0.4026

-0.6337 -0.3973 0.6638]

3. Similarly, the local helical frame for base pair 2:

• TipInclination angle (Ψ, in magnitude) is the angle between unit vectorsh andz2 ,

and is 17.2279◦. Note that by (symmetric) definition, it is the same as for base pair 1.

• Hinge axis is defined by a cross product fromh to z2 , normalized to give:

[-0.4121 0.5511 -0.7256]

• RotateR2 through the above hinge axis by negative TipInclination angle (i.e.,−17.2279◦)

will align the resultant z-axis withh, which gives us the local helical reference frame:

H2 = R_hinge(-17.2279) * R2 = [

-0.5861 -0.5091 -0.6303

0.3139 -0.8599 0.4026

-0.7470 0.0381 0.6638]

4. The “middle helical frame” is the average ofH1 andH2, and by definition, it is orthogonal.

Hm = [

-0.4058 -0.6618 -0.6303

0.5580 -0.7256 0.4026

-0.7238 -0.1883 0.6638]

5. Helical twist is the angle fromy(H1) to y(H2) (or from x(H1) to x(H2) ) of the local

helical reference frames defined above, with reference to the local helical axish for sign

determination: 35.0103◦.
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6. Helical rise is the projection of the vector linkingo1 to o2 onto the local helical axish:

2.8493Å.

7. Usebase pair 1to calculate tip and inclination (base pair 2 gives the same result):

• Phase angleψ is defined from hinge axis ([0.0399 0.8707 -0.4902] ) to pos-

itive tip axis (2nd column ofH1, [-0.7532 -0.5242 -0.3973] ) with refer-

ence the local helical axish ([-0.6303 0.4026 0.6638] ) for sign control:

106.9598◦ .

• Tip is defined as:Ψ ∗ cos(ψ) = 17.2279 ∗ cos(106.9598 ∗ π/180) = −5.0254◦

• Inclination is defined as:Ψ ∗ sin(ψ) = 17.2279 ∗ sin(106.9598 ∗ π/180) = 16.4787◦

8. Get the origin of local helical frame of base-pair 1. It is based on Chasles’ theorem as

used inRNA(Babcocket al., 1994, see Figure 13, page 141 for a detailed illustration).The

procedure implemented in 3DNA is as follows:

• VectorAB is defined by:

AB = [o2 - o1] - Helical_Rise * h =

[-0.3509 2.8561 2.2270] - 2.8493 * [-0.6303 0.4026 0.6638]

= [1.4451 1.7089 0.3357]

• Vector AD is defined by an angle of

90 - 0.5 * Helical_Twist = 72.4948

from vector AB with reference toh:

AD = R_h(72.4948) * AB’ = [-0.5182 1.6306 -1.4812]’

R_h(72.4948) is the rotation matrix alongh (Eq. [1]) by an angle of72.4948 ◦.

AB’ changes row vectorAB to a column vector to be compatible with the3-by-3 ro-

tation matrix. When normalized, theADvector is:[-0.2290 0.7205 -0.6545]

• The magnitude ofADis defined by:

AD_magnitude =

0.5 * AB_magnitude / sin(0.5 * Helical_Twist * pi / 180)

= 0.5 * 2.2631 / 0.3008 = 3.7618

• We then get “D”, the position vector where the local helical axis passes through. It is

the origin of local helical frame of base pair 1.

o1_h = o1 + AD_magnitude * AD =

[15.0378 0.1221 -4.6088] + 3.7618 * [-0.2290 0.7205 -0.6545]

= [14.1764 2.8326 -7.0709]

The origin of the local helical frame of base pair 2 is given by:

o2_h = o1_h + Helical_Rise * h = [12.3805 3.9798 -5.1797]
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The origin of the “middle helical frame” is the average ofo1_h ando2\_h : [13.2785

3.4062 -6.1253]

9. X-displacement and y-displacement are defined as the projections of the vector fromo1 h

to o1 onto the x- and y-axis of local helical frame of base pair 1 (H1) :

[o1 - o1_h] * H1(:, 1:2) =

([15.0378 0.1221 -4.6088] - [14.1764 2.8326 -7.0709]) * H1(:, 1:2)

= [-3.7562 -0.2063]

So x-displacement = -3.7562̊A and y-displacement = -0.2063̊A.

Using base pair 2 givesexactly the same values due to symmetric definition.

10. Overall, the six local helical parameters are:

X-disp Y-disp Rise Incl. Tip Twist

-3.7562 -0.2063 2.8493 16.4787 -5.0254 35.0103

5.7 Rebuilding based on local step parameters

The local step parameters defined in 3DNA are rigorous and thus reversible. Given a set of step

parameters, the relative position and orientation of the two base pairs can be exactly reproduced

by a rebuilding procedure as detailed inSCHNAaP/SCHNArP(Lu et al., 1997a; Luet al., 1997b).

Here we provide step-by-step working example so users can understand the algorithm better.

Using the six step parameters of the first GG/CC step inadh026 as calculated above:

Shift Slide Rise Tilt Roll Twist

0.3853 -1.4033 3.3349 2.9818 9.7776 33.5296

1. We first Twist base-pairs 2 and 1 about the “middle frame” z-axis (which at this stage is

coincident with the z-axes of both base-pair reference frames) through+Ω/2 and−Ω/2

respectively:

T2 = Rz(+Ω/2), T1 = Rz(−Ω/2) (2)

Note that to be consistent with previous literatures, the symbol used for Twist here is still

Ω (not ω), which is 33.5296◦. The rotation matrixRz corresponds to the Eq. [1] with unit

vector [0 0 1] . Similarly, Rx corresponds to[1 0 0] andRy corresponds to[0 1

0] . Here, the “middle frame” is the “global” reference frame and corresponds to an identity

matrix.

2. The RollTilt angle (Γ) is given by:

Γ =
√

ρ2 + τ2 =
√

9.77762 + 2.98182 = 10.2221◦ (3)
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roll−tiltΓ

φ

x (tilt)

y (roll)

Figure 7: Roll-tilt combination

3. The Roll-Tilt axis is determined by the values of Roll and Tilt, and it lies in the x-y plane of

the “middle frame”. For the above case, it is[0.2917 0.9565 0] , when normalized.

The angle from the Roll-Tilt axis ([0.2917 0.9565 0] ) to the “middle frame” y-axis

(Roll) ([0 1 0] ) is calledφ. Its sign is determined with reference to the “middle frame”

z-axis ([0 0 1] ), with values in range from−180◦ to 180◦. In this case, it is 16.9598◦.

4. We now rotateT2 andT1 through+Γ/2 and−Γ/2 respectively about the Roll-Tilt axis to

give the final orientation of the two base-pairs with respectto the “middle frame”. Analyti-

cally, the rotation about the Roll-Tilt axis can be expressed in terms of three rotations with

reference to “middle frame” axes: First a rotation of angleφ around z-axis to align Roll-Tilt

axis with y-axis, then a rotation of angle±Γ/2 around y-axis, and finally a rotation of angle

−φ around z-axis to bring the Roll-Tilt axis back. Overall, therequired rotations can be

written as:

T2m = [Rz(−φ) Ry(+Γ/2) Rz(+φ)] T2

= Rz(−φ) Ry(+Γ/2) Rz(φ+ Ω/2) (4)

T1m = [Rz(−φ) Ry(−Γ/2) Rz(+φ)] T1

= Rz(−φ) Ry(−Γ/2) Rz(φ− Ω/2) (5)

5. To get the correct positions of the origins of the reference frame of base-pair 2 and 1,

we apply the translation vectors(+Dx/2,+Dy/2,+Dz/2) and(−Dx/2,−Dy/2,−Dz/2)

respectively. Both translations are defined with referenceto the “middle frame”. Here

Dx,Dy,Dz represent Shift, Slide and Rise.

6. The set of equations described above for the synthesis of adinucleotide step defines the

positions and orientations of the two base-pairs in a dinucleotide step with respect to the
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“middle frame”. However, by means of a set of simple matrix transformations, we can

change the reference frame from the “middle frame” to the reference frame of the base-

pair 1. The orientation and position of base-pair 2 and the “middle frame” with respect to

base-pair 1 are now given by the following equations:

Rm = [T1m]−1 = Rz(Ω/2 − φ) Ry(Γ/2) Rz(φ) (6)

R2 = [T1m]−1 T2m = Rz(Ω/2 − φ) Ry(Γ) Rz(Ω/2 + φ) (7)

o2 = [Dx Dy Dz] Rm′ (8)

WhereRm
′ means the transpose of the “middle frame” expressed with reference to base pair

1.

Using the above set of step parameters, we have the following:

Rm = [

0.9537 -0.2873 0.0891

0.2885 0.9575 -0.0003

-0.0852 0.0260 0.9960]

R2 = [

0.8204 -0.5436 0.1775

0.5524 0.8336 -0.0006

-0.1476 0.0985 0.9841]

o2 = [0.3853 -1.4033 3.3349] * Rm’ = [1.0677 -1.2336 3.2524]

Expressed in terms of the experimental coordinate reference frame of base pair 1, we get

the reference frame for base pair 2 which are the same as shownin section 5.4: “Base-pair

parameters”

R1_exp = [

-0.2323 -0.8985 -0.3724

0.7889 -0.3980 0.4682

-0.5689 -0.1851 0.8013]

R2_exp = R1_exp * R2 = [

-0.6319 -0.6594 -0.4072

0.3583 -0.7144 0.6010

-0.6873 0.2339 0.6877]

o1_exp = [15.0378 0.1221 -4.6088]

o2_exp = o1_exp + o2 * R1_exp’ = [14.6869 2.9781 -2.3818]
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5.8 Rebuilding based on local helical parameters

The local helical parameters defined in 3DNA are rigorous andthus reversible. Given a set of heli-

cal parameters, the relative position and orientation of the two base pairs can be exactly reproduced

by a rebuilding procedure. Here we provide step-by-step working example so users can understand

the algorithm better.

Using the six helical parameters of the first GG/CC step inadh026 as calculated above:

X-disp Y-disp Rise Incl. Tip Twist

-3.7562 -0.2063 2.8493 16.4787 -5.0254 35.0103

There are four frames for a dinucleotide step consisting of base-pairs1 and2: the base-pair

framesR1 andR2 and their corresponding helical framesR1h andR2h. R1h andR1 are related

by x-displacement, y-displacement, inclination and tip, so areR2h with R2. R1h andR2h are

related byhelical rise andhelical twist.

tip−inclinationΨ

ψ

x (inclination)

y (tip)
Ψ

y2 (tip)

x2 (inclination)

ψ

x1 (inclination)

y1 (tip)

Ωh

(a) (b)

Figure 8: Combination of Tip and Inclination, and calculation of helical Twist.

1. R1h as reference (1h in superscript)

Starting withR1h as the reference for the dinucleotide step concerned, thenR1h
1h is the

identity matrixI:

R1h
1h = I (9)

R1h
2h is got by the helical twist:

R1h
2h = Rz(Ωh) (10)

R1h
1

is got by a combined rotation of magnitudeΨ (=
√

η2 + θ2) along tip-inclination axis

(Fig. 8 (a)). ThusΨ is the exact angle between base-pair normal and the local helical helix.

Let the angle from tip-inclination axis to tip axis beψ, the rotation can be expressed as a

rotation aboutz-axis by angleψ, followed by a rotation abouty-axis by angleΨ, and then a

rotation aboutz-axis by angle−ψ to bring the axis back:

34 Xiang-Jun Lu (3dna.lu@gmail.com)



R1h
1 = Rz(−ψ) Ry(Ψ) Rz(ψ) (11)

As shown in Fig. 8 (b),R1h
2

is got by a helical twist, and then a rotation about the tip-

inclination axis ofR1h
2h (which is related to the tipy-axis ofR1h by the helical twistΩh):

R1h
2 = [Rz(Ωh − ψ) Ry(Ψ) Rz(ψ − Ωh)] Rz(Ωh) = Rz(Ωh − ψ) Ry(Ψ) Rz(ψ) (12)

2. R1 as reference

With Eqs. 9 to 12, we can do some simple matrix transformations to makeR1 as the refer-

ence:

R1 = I (13)

R1h = [R1h
1 ]−1 = Rz(−ψ) Ry(−Ψ) Rz(ψ) (14)

R2h = [R1h
1 ]−1 R1h

2h = Rz(−ψ) Ry(−Ψ) Rz(ψ + Ωh) (15)

R2 = [R1h
1 ]−1 R1h

2

= Rz(−ψ) Ry(−Ψ) Rz(ψ) Rz(Ωh − ψ) Ry(Ψ) Rz(ψ)

= Rz(−ψ) Ry(−Ψ) Rz(Ωh) Ry(Ψ) Rz(ψ) (16)

Equ. 16 describes the orientation of base-pair2 with reference to1.

3. Position vector of base-pair 2 with reference to 1

• From base-pair 1 origin to base-pair 1 helical origin:−[dx dy] [x1h y1h]′

• From base-pair 1 helical origin to 2 helical origin:dz · z′
1h = dz · z′

2h

• From base-pair 2 helical origin to base-pair 2 origin:+[dx dy] [x2h y2h]′

Combining the above three items, we have the position (base-pair origin) of 2 relative to 1

as follows:

o2 = [dx dy] {[x2h y2h]′ − [x1h y1h]′} + dz · z′1h (17)

Note thatx1h, y1h, z1h, x2h, y2h, z2h are3 × 1 column vectors.′ means the transpose of a

vector to change it to a row vector.

4. Using the example where inclination = 16.4787◦and tip = -5.0254◦, we haveΨ =
√

η2 + θ2 =

17.2279◦. The tip-inclination axis lies in the x-y plane of local helical frame of base pair

1: [16.4787 -5.0254 0] ; which when normalized gives:[0.9565 -0.2917 0] .

The angle from the tip-inclination axis ([0.9565 -0.2917 0] ) to the base pair 1 helical

y-axis (tip) ([0 1 0] ) with reference to the helical z-axis ([0 0 1] ) isψ = 106.9598◦ .

Using equations 15 to 17, we having the following:
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R1h = [

0.9962 -0.0125 0.0864

-0.0125 0.9590 0.2833

-0.0864 -0.2833 0.9551]

R2h = [

0.8087 -0.5818 0.0864

0.5399 0.7926 0.2833

-0.2333 -0.1825 0.9551]

R2 = [

0.8204 -0.5436 0.1775

0.5524 0.8336 -0.0006

-0.1476 0.0985 0.9841]

o2 = [1.0677 -1.2336 3.2524]

Compared with the numbers based on step parameters, it is clear that Eqs. 16 and 7, Eqs. 17

and 8 are equivalent.

5.9 Relation between local helical and step parameters

To refer the orientation and position of one base-pair relative to the other, 6 parameters (3 rotations

and 3 translations) are required. One set of such parametersis (Shift, Slide, Rise, Tilt, Roll and

Twist), and the other set is (X-displacement, Y-displacement, Helical Rise, Inclination, Tip and

Helical Twist).

Obviously these two sets should be completely reversible/dependent: from any one set you can

get the other, rigorously. You can verify this point usingstep_hel , a utility program in 3DNA.

Graphically this is best illustrated by the Calladine-DrewA to B transition model by introducing

uniform Roll and Slide values at each dinucleotide step. Thekey point is that by introducing Roll,

you also get Inclination, and with Slide, you get X-displacement.

The rebuild program in 3DNA can construct a DNA structure using either set of these

parameters. Examples of such input files (e.g.,bp_step.par andbp_helical.par ) can be

generated byanalyze (Examples/Analyze_Rebuild directory.)

We have two sets of simple equations:

θ/η = −τ/ρ

2 cos Ωh = cos Ω(1 + cos Γ) − (1 − cos Γ)
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