5 Some technical details

In our experience, following step-by-step working examsptethe best way to understand
any nontrivial algorithm. To make things right, every teidah detail counts. Over the
years, we have received many requests asking for exactly3miwA parameters are cal-
culated. Here, we provide details of some key 3DNA compasathat interested users
could understand them better and possibly apply the sarhaitpees to other related sit-
uations.

As an example, we will use the first dinucleotide s&B/CCfrom A-DNA adh026
(with base sequenddGGCGCgUncluded in 3DNA distribution, which shows Slide and
Roll more clearly.

5.1 Least-squares fitting procedures

3DNA starts with a least-squares procedure to fit a standzsd Wwith an embedded refer-
ence frame to an observed base structure. Itimplementsad:form solution of absolute
orientation using unit quaternions first introduced by HA@®87). This method can be ap-
plied when one or both of the structures are perfectly plahlais section is based on the
following URL:

http://rutchem.rutgers.edu/ olson/jmb/Is_fit.html

e Standard reference frame (Olsetral., 2001)

Using base G as an example, its xyz coordinates in standarénee frame in PDB
format are as follows (check BASEPARS directory for otheses:

ATOM 1 Cr G A 1 -2.477  5.399  0.000

ATOM 2 N9 G A 1 -1.289 4551  0.000
ATOM 3 C8 G A 1 0.023 4962 0.000
ATOM 4 N7 G A 1 0.870 3.969 0.000
ATOM 5 C5 G A 1 0.071 2.833  0.000
ATOM 6 C6 G A 1 0.424 1.460  0.000
ATOM 7 06 GA 1 1.554 0.955  0.000
ATOM 8 N1 G A 1 -0.700 0.641  0.000
ATOM 9 C2 G A 1 -1.999 1.087  0.000
ATOM 10 N2 GA 1 -2.949 0.139 -0.001

ATOM 11 N3 GA 1 -2.342 2.364 0.001
ATOM 12 C4 GA 1 -1.265  3.177 0.000

e Least-squares fitting procedure

Least-squares fitting in 3DNA uses only (available) ringnado nine for purines’ (
N9 ';"C8 ' ;" N7’ ;"C5’;"C6" ;N1 ;"C2" ;" N3’ ;"
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C4 "), and six for pyrimidines’ (N1 ' ;" C2 " ;" N3 ' ;" C4 ' ;" C5 ' ;
" C6 ).

Using the first G residue in chain A @dh026 , denoted thereafter & G1, the
corresponding 9 ring atoms in standasX{ sY, sZ ) and experimentaleXX,

eY, eZ) structures are as follows:

sX sY sZ eX eY eZ
1 N9 -1.289 4551 0.000 11.417 -2.904 -4.880
2 C8 0.023  4.962 0.000 10.759 -1.995 -5.662
3 N7 0.870  3.969 0.000 11.469 -0.913 -5.867
4 C5 0.071 2.833 0.000 12.638 -1.108 -5.156
5 C6 0.424 1.460  0.000 13.759 -0.273 -5.036
6 N1 -0.700 0.641 0.000 14.767 -0.848 -4.249
7 C2  -1.999 1.087 0.000 14.663 -2.116 -3.719
8 N3 -2.342 2.364 0.001 13.625 -2.934 -3.830
9 C4 -1265 3.177 0.000 12.625 -2.328 -4.545
s_ave: -0.6897  2.7827 0.0001 e_ave:12.8580 -1.7132 -4.771 6

Wheres_ave ande_ave are the geometric centers of the nine ring atoms in the stdnda
and experimental bases respectively.

We collect the two sets of coordinates in 8hex 3 matrices S and E corresponding respec-
tively to the standard and experimental bases. We thenrcoh8t x 3 covariance matrix
(C) betweersS andE using the following formula:

1 1
C = —ommee [S E--—-—-Sifi E
N -1 N

-0.6849 0.8393 -0.7418
-2.1919 -0.5683  -0.7888
0.0001  -0.0002 0.0001

HereN, the number of atoms in each base, is 9, and iislar 1 column vector consisting
of only ones.S’ andi’ are the transpose of matr&and column vector respectively.

From the nine elements @ we subsequently generate thex 4 real symmetric matrii
using the expression:

| cl1+c22+c33 c23-c32 c31-c13 cl2-c21 |
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M = | €23-c32 cl1-c22-c33 cl2+c21 c31+c13 |
| c31-c13 cl2+c21 -c11+c22-c33 c23+c32 |
| cl2-c21 c31+c13 c23+c32 -c11-c22+c33 |

-1.2530 -0.7886 0.7419 3.0312

-0.7886  -0.1167 -1.3526  -0.7417
0.7419  -1.3526 0.1165  -0.7889
3.0312 -0.7417  -0.7889 1.2533

The largest eigenvalue of matriMis 3.5896, and its corresponding unit eigenvectpr (
i=0-3 )is:

[0 gl g2 g3 ]=][05460 -0.2921  0.0524  0.7835 ]

The rotation matriR is deduced from thgi as:

| 9000+g191-9292-g393 2(9192-q0q3) 2(9193+q0q2) |
R = 2(9291+q0q3) q0q0-q1q1+9292-q3q3 2(9293-q0q1) |
| 2(9391-q0q2) 2(9392+q0q1) 0090-9q1g1-0292+g393 |

-0.2331 -0.8862  -0.4004
0.8249  -0.3983 0.4012
-0.5150 -0.2368 0.8238

Following coordinate transformation with matrlR, the translation vector for the least-
squares fit between standard and experimental bases isdlafine

0 = e ave - s_ave R’ = [15.1632 -0.0362 -4.4678]

Hereo andR are the origin and orientation, i.e., the reference framh¢h® experimental
base. MoreoveRRis guaranteed to be orthogonal.

The least-squares fitted coordinatEs¢f the standard base atoms on the experimental struc-

ture are then given by:

SR +o0

T
Il

11.4307 -2.9119  -4.8818
10.7607  -1.9933  -5.6548
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11.4432  -0.8991  -5.8558
12.6361 -1.1058  -5.1753
13.7706  -0.2678  -5.0319
147583  -0.8689  -4.2591
14.6659 -2.1180  -3.6958
13.6138 -2.9091  -3.8208
12.6427  -2.3449  -4.5688

HereSisthe (N x 3) matrix of the original coordinates of the standard base.

The difference matrixd) betweerF andE, the (N x 3) matrix of the original coordinates
of the experimental base, and the root-mean-square (RM&tda between the two struc-
tures are found to be:

D=E-F

-0.0137 0.0079 0.0018
-0.0017 -0.0017 -0.0072
0.0258 -0.0139 -0.0112
0.0019  -0.0022 0.0193
-0.0116  -0.0052  -0.0041
0.0087 0.0209 0.0101
-0.0029 0.0020  -0.0232
0.0112  -0.0249  -0.0092
-0.0177 0.0169 0.0238

RMS deviation = sqrt(sum(d"2)/N) = 0.0236

5.2 Base reference frames

Following the above least-squares procedure, we get tleviolg for A G1L

RMSD = 0.0236

o = [15.1632 -0.0362  -4.4678]

R = [

-0.2331  -0.8862  -0.4004

0.8249  -0.3983 0.4012

-0.5150  -0.2368 0.8238]

where the first column corresponds to x-axis, the 2nd to
y-axis, and the 3rd to z-axis respectively.

Similarly for B_C8(i.e., C8 on chain B) which pairs with_G1, we have the follow-
ing:
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RMSD = 0.0229
0 = [14.9124  0.2803  -4.7498]

R =1
-0.2339 0.9100 0.3422 ==> -0.2339  -0.9100 -0.3422
0.7496 0.3930 -0.5326 ==> 0.7496  -0.3930 0.5326

-0.6191 0.1320 -0.7741 ==> -0.6191 -0.1320 0.7741]

Since their dot product is negative (-0.9884), the z-axiB o€8 is anti-parallel to that oA_G1
We reverse the y- and z-axes Bf C8 (by a 180-degree rotation around the x-axis) to make its
z-axis parallel to that of_G1, as shown on the right side Bffollowing the arrows.

ForA_G2 we have:

RMSD = 0.0171
o = [14.8757 2.9250  -2.4635]
R =1
-0.6807 -0.6274  -0.3781
0.3893  -0.7471 0.5388
-0.6205 0.2195 0.7528]

ForB_C7, which pairs withA_G2, we have:

RMSD = 0.0213
0 = [14.4982  3.0313  -2.3001]

R =

05797  0.6905 04326 ==> -0.5797 -0.6905 -0.4326
0.3207  0.6814 -0.6579 ==>  0.3207 -0.6814  0.6579
0.7491 -0.2426 -0.6165 ==> -0.7491 02426  0.6165]

5.3 General rotation matrix

The general rotation matriR g (¢) (EQ. [1]) describes a rotation of magnitugeabout an arbitrary
unit vectord = u; 1+ usj + usk, wherei, j, k are unit vectors along the axes of the local Cartesian
frame:

cos ¢ + (1 — cosp)u? (1 —cosp)ujug —ugsing (1 — cos p)ujus + ugsin g
Ra(p) = | (1 —cosp)ujug +ugsing  cosp + (1 — cos )u3 (1 — cos p)ugug —ugsing |,
(1 —cosp)ujug —ugsing (1 — cos p)ugus + ug sing cos ¢ + (1 — cosp)u3

1)
5.4 Base-pair parameters

Given the above base reference framesfoG1,B_C8 andA_G2,B_C7, we can calculate the
base-pair parameters (Shear, Stretch, Stagger, BucklpelRr, and Opening). The procedure is
exactly the same as for step parameters detailed below. wiejast give the parameters for the
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two base-pairs, and users who are interested in knowingetadslshould work them through and
should get exactly the same numbers.

Shear  Stretch Stagger Buckle Propeller  Opening
A G1-B_C8 -0.4683 -0.1516 -0.0156 -5.4713 -6.7936 -2.8660
A G2-B_C7 -0.1643 -0.2112 -0.3299 -4.6532  -9.8008 2.7357

The “middle frame” used in calculating the bp parameterobess the bp reference frame. For
base paia_G1-B_C8, we have:

ol = [15.0378  0.1221  -4.6088]

RL = [

-0.2323  -0.8985  -0.3724
0.7889  -0.3980  0.4682
-0.5689  -0.1851  0.8013]

For base paiA_G2-B_C7, we have:

02 = [14.6869  2.9781  -2.3818]

R2 = [

-0.6319  -0.6594  -0.4072
0.3583 -0.7144  0.6010
-0.6873  0.2339  0.6877]

These two reference frames are used in the next two sectionaltulate step and helical
parameters.

5.5 Step parameters

Given the 2 bp reference frames above, the following proeedare used to calculate step parame-
ters (Shift, Slide, Rise, Tilt, Roll and Twist). It followsEHS definition, as detailed in SCHNAaP.

1. Hinge axis is the cross product between z1 (3rd colunfRldfand z2 (3rd column oR2):

[-0.3724 0.4682 0.8013] x [-0.4072 0.6010 0.6877]
= [-0.1596 -0.0702 -0.0332]. When normalized, it becomes:
[-0.8993 -0.3953 -0.1870]

Geometrically, hinge axis is the intersection line betwentwo base pair planes.

2. The RollTilt angle T, i.e., net bending angle) is the magnitude between z1 anatzzh is
given by their dot productt” = 10.2221 A.

3. Now we rotate R2 by-€0.5 x I" = —5.1111) degrees around the hinge axis (see Eq. [1]):
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R_hinge(-5.1111) = |
0.9992  -0.0152 0.0359
0.0181 0.9966  -0.0798
-0.0345 0.0804 0.9962]
R2'" = R_hinge(-5.1111) * R2 = [
-0.6616  -0.6396  -0.3914
0.4005 -0.7426 0.5368
-0.6340 0.1984 0.7475]

Similarly, we rotate R1 by-{0.5 x I") degrees along the hinge axis:

RI' = R_hinge(+5.1111)  * R1 = |
-0.1982  -0.8986  -0.3914

0.7441 -0.3978  0.5368
-0.6381  -0.1848  0.7475]

By definition, the z-axes dR1’ andR2’ (the third column) are the same, i.e., after sym-
metric rotations, we have perfectly aligned the z-axes eftto bps.

. The x-, y- and z-axes of the “middle frame” are simply therage between those Bfl’

and R2’, and by definition, they are orthogonal. The origin of the bphie geometric
average obl ando2. For the above case, we have the “middle frame” as follows:

Rm = |

-0.4490 -0.8033 -0.3914
0.5977  -0.5955 0.5368
-0.6642 0.0071 0.7475]

om = [14.8624 1.5501  -3.4953]

. The translational parameters (Shift, Slide, and Risesamply the projections of the vector

linking from 01 to 02 onto the x-, y-, and z-axes of the “middle frame”:

[Shift Slide Rise] = (02 - 01) * Rm
= [-0.3509 2.8561 2.2270] * Rm
= [0.3853  -1.4033 3.3349]

. Twist is the angle fronyl to y2 (or fromx1 to x2 of the “rotated”’R1’ andR2’ matri-

ces respectively). lIts sign is defined with reference to thatile frame” z-axis (the 3rd
column ofRn), following right- handed rule for positive Twist angle. kospecifically, the
magnitude of the angle betwegh andy?2 is: 33.5298. The signe is determined by:

ylI' x y2) . z =
[-0.2162 0.2965 0.4129] . [-0.3914 0.5368 0.7475]
= 0.5524
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So Twist is positive.

7. The phase angley] is the angle from the hinge-axis to the “middle frame” ysax2nd
column ofRn). By definition, hinge-axis lies in the xy-plane of the “middrame” since
it is perpendicular to the z-axis of the “middle-frame”. Thkase angle also has a sign
associate with it, determined in the same way as Twist shdvavea In this caseg =
+16.9598.

8. Roll is defined as:
' * cos(¢) = 10.2221 * cos(16.9598 * w/180) = 9.7776°.
Similarly, Tilt is defined as:

T sin(¢) = 10.2221 x sin(16.9598 x 7/180) = 2.9818°.

9. Overall, the six step parameters are:

Shift Slide Rise Tilt Roll Twist
0.3853 -1.4033 3.3349 2.9818 9.7776 33.5296

5.6 Local helical parameters

The geometric approach described below gives exactly the samerical values as those from the
RNA(Babcocket al., 1994). The pivot point issue does not apply here: it is osgduin defining
the base pair reference frame. Given the reference framtewedivo base pairs, the procedure
used in 3DNA to calculate the local helical parameters épldicement, y-displacement, helical
rise, inclination, tip, and helical rise) is analogous te tine detailed above for step parameters, by
using a tip-inclination combination.

Please note that to define a local helical axis, we needase-pair reference frames. 3DNA
finds the single-helical axis (which is actually gxdy) that brings 1 to coincide with 2 by a Helical
Twist angle. The position which this helix passes througlefined by Chasles’ theorem as detailed
in Figures 12 & 13 of Babcockt al. (1994). The calculation of x-displacement, y-displacetmen
tip and inclination is then exactly as described in SCHNAaldt al., 1997a).

To make the above point clear, let's use A1-A2-A3 triplet asgample. First, A1-A2 define
a local helical axis and a set of local base-pair helical petars are calculated. In 3DNA, these
parameters are defined in a symmetric manner that bp AL TbaA®:T2 have exactly the same
values. Similarly, step A2-A3 defines another set of localebpair helical parameters. Thus bp
A2:T2 has two sets of helical parameters associated witepedding on its context, i.e., either
with bp A1:T1 or with bp A3:T3. Moreover, the local Helical $& and Helical Twist are directly
related to a dinucleotide step. These are the reasons tbatl'base-pair helical parameters” as
given in 3DNA refer to base-pair steps. As a matter of fae,sthematic diagrams illustrating the
local helical parameters (x-displacement, y-displacamienlination and tip) as given in 3DNA
website and this user's manual were based on two perfectislapped base pair blocks.

Using the first GG/CC dinucleotide stepaalh026 as an example, the detailed precedure is
as follows:
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1. The local helical axis is defined by the cross produckaf ¢ x1 )and 2 - yl ):

[[0.3997 -0.4307 -0.1183] x [0.2391  -0.3164 0.4190] =
[-0.2179 0.1392 0.2294], which when normalized, gives:
h = [-0.6303 0.4026 0.6638]

2. Local helical frame of base-pair 1.

e TipInclination angle ¥, in magnitude) is the angle between unit vectorandzl,
and is 17.2279

e Hinge axis is defined by a cross product frbnto z1, normalized to give:
[0.0399 0.8707 -0.4902]
It lies in the xy-plane of local helical frame given below.

e RotateR1through the above hinge axis by negative TipInclinationeafige.,—17.2279)
will align the resultant z-axis with, which gives us the local helical reference frame:

H1 = R_hinge(-17.2279)  » Rl = |
-0.1880 -0.7532  -0.6303
0.7504 -0.5242  0.4026
-0.6337  -0.3973  0.6638]

3. Similarly, the local helical frame for base pair 2:

e TipInclination angle ¥, in magnitude) is the angle between unit vectorandz2,
and is 17.2279 Note that by (symmetric) definition, it is the same as forebaair 1.

e Hinge axis is defined by a cross product frno z2, normalized to give:
[-0.4121 0.5511 -0.7256]

e RotateR2through the above hinge axis by negative TipInclinationafige.,—17.2279)
will align the resultant z-axis with, which gives us the local helical reference frame:

H2 = R_hinge(-17.2279) * R2 = |
-0.5861  -0.5091  -0.6303
0.3139  -0.8599 0.4026
-0.7470 0.0381 0.6638]

4. The “middle helical frame” is the averagetdl andH2, and by definition, it is orthogonal.

Hm = [
-0.4058 -0.6618  -0.6303
0.5580  -0.7256 0.4026
-0.7238  -0.1883 0.6638]

5. Helical twist is the angle from(H1) toy(H2) (or fromx(H1) tox(H2) ) of the local
helical reference frames defined above, with referenceddadbal helical axish for sign
determination: 35.0103
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6. Helical rise is the projection of the vector linkimj. to 02 onto the local helical axif:
2.8493A.

7. Usebase pair 1to calculate tip and inclination (base pair 2 gives the sagsalt):

e Phase angl® is defined from hinge axi§@.0399 0.8707 -0.4902] ) to pos-

itive tip axis (2nd column oH1, [-0.7532 -0.5242 -0.3973] ) with refer-
ence the local helical axib ([-0.6303 0.4026 0.6638] ) for sign control:
106.9598.

e Tipis defined asW¥ * cos(¢)) = 17.2279 * cos(106.9598 * w/180) = —5.0254°
e Inclination is defined as¥ « sin(¢)) = 17.2279 % sin(106.9598 x 7/180) = 16.4787°

8. Get the origin of local helical frame of base-pair 1. It @sbd on Chasles’ theorem as
used inRNA(Babcocket al., 1994, see Figure 13, page 141 for a detailed illustrati®hp
procedure implemented in 3DNA is as follows:

e \ectorABis defined by:

AB = [02 - 0l] - Helical_Rise * h =
[-0.3509 2.8561 2.2270] - 2.8493 * [-0.6303 0.4026 0.6638]
= [1.4451 1.7089 0.3357]

e Vector AD is defined by an angle of
90 - 0.5 = Helical_Twist = 72.4948
from vector AB with reference th:
AD = R_h(72.4948) * AB’ = [-0.5182 1.6306  -1.4812]

R_h(72.4948) s the rotation matrix alon (Eqg. [1]) by an angle 072.4948 °.
AB’ changes row vectokBto a column vector to be compatible with tBéy-3  ro-
tation matrix. When normalized, theDvector is:[-0.2290 0.7205 -0.6545]

e The magnitude oADis defined by:

AD_magnitude =
0.5 * AB_magnitude / sin(0.5 * Helical_Twist * pi / 180)
= 05 * 22631 / 0.3008 = 3.7618

e We then get “D”, the position vector where the local helicabgasses through. Itis
the origin of local helical frame of base pair 1.

ol _h = ol + AD_magnitude * AD =
[15.0378 0.1221 -4.6088] + 3.7618 * [-0.2290 0.7205 -0.6545]
= [14.1764 2.8326  -7.0709]

The origin of the local helical frame of base pair 2 is given by

02 _h = 0l_h + Helical_Rise * h = [12.3805 3.9798 -5.1797]
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The origin of the “middle helical frame” is the averageodf h ando2\_h :[13.2785
3.4062 -6.1253]

9. X-displacement and y-displacement are defined as theqtimjs of the vector from1 _h
to ol onto the x- and y-axis of local helical frame of base paiH1):

[01 - 01_h] =+ H1(, 1:2) =
([15.0378 0.1221 -4.6088] - [14.1764 2.8326 -7.0709]) * H1(:, 1:2)
= [-3.7562 -0.2063]

So x-displacement = -3.756%and y-displacement = -0.206%8

Using base pair 2 givesxactly the same values due to symmetric definition.

10. Overall, the six local helical parameters are:

X-disp Y-disp Rise Incl. Tip Twist
-3.7562  -0.2063 2.8493 16.4787 -5.0254  35.0103

5.7 Rebuilding based on local step parameters

The local step parameters defined in 3DNA are rigorous ansl ieversible. Given a set of step
parameters, the relative position and orientation of the base pairs can be exactly reproduced
by a rebuilding procedure as detailedS€@HNAaP/SCHNArRLu et al., 1997a; Luet al., 1997b).
Here we provide step-by-step working example so users caarstand the algorithm better.

Using the six step parameters of the first GG/CC stegulin026 as calculated above:

Shift Slide Rise Tilt Roll Twist
0.3853 -1.4033 3.3349 2.9818 9.7776 33.5296

1. We first Twist base-pairs 2 and 1 about the “middle frameakis (which at this stage is
coincident with the z-axes of both base-pair reference égnthrough+£2/2 and —/2
respectively:

T2 =R.(+Q/2), Tl1=R.(-0Q/2) )

Note that to be consistent with previous literatures, thatsyl used for Twist here is still
Q (notw), which is 33.5296. The rotation matrixR., corresponds to the Eq. [1] with unit
vector[0 O 1] . Similarly, R, corresponds t¢1 O 0] andR, corresponds t¢0 1

0] . Here, the “middle frame” is the “global” reference framelaorresponds to an identity
matrix.

2. The RollTilt angle I) is given by:

L =/p2+72=19.77762 + 2.98182 = 10.2221° (3)
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[ roll-tilt

y (roll)< .

Figure 7: Roll-tilt combination

3. The Roll-Tilt axis is determined by the values of Roll arlt, &ind it lies in the x-y plane of

the “middle frame”. For the above case, i{€62917 0.9565 0] , when normalized.

The angle from the Roll-Tilt axis[(.2917 0.9565 0]
(Roll) (O 1 0] )is callede. Its sign is determined with reference to the “middle frame”
z-axis (0 0 1] ), with values in range from-180° to 180°. In this case, it is 16.9598

) to the “middle frame” y-axis

. We now rotatél'2 andT1 through+I'/2 and—TI"/2 respectively about the Roll-Tilt axis to

give the final orientation of the two base-pairs with resped¢he “middle frame”. Analyti-
cally, the rotation about the Roll-Tilt axis can be exprésigeterms of three rotations with
reference to “middle frame” axes: First a rotation of angkeround z-axis to align Roll-Tilt
axis with y-axis, then a rotation of anglel’ /2 around y-axis, and finally a rotation of angle
—¢ around z-axis to bring the Roll-Tilt axis back. Overall, tleguired rotations can be

written as:
2" = [R;(—¢) Ry(+I'/2) R, (+¢)] T2
= R.(—9¢) Ry(+1'/2) R.(¢ + ©Q/2) (4)
T = [Rz(_¢) Ry(_r/2) Rz(+¢)] T1
= R.(—¢) Ry(-I/2) R.(¢ — Q/2) (5)

. To get the correct positions of the origins of the refeeefframe of base-pair 2 and 1,

we apply the translation vecto(s-D,/2,+D, /2,+D./2) and(—D,./2,—D,/2,—D./2)
respectively. Both translations are defined with referetacéhe “middle frame”. Here

D,, D,, D, represent Shift, Slide and Rise.

. The set of equations described above for the synthesisdofuzleotide step defines the

positions and orientations of the two base-pairs in a deuatade step with respect to the

Xiang-Jun Lu (3dna.lu@gmail.com)



33

“middle frame”. However, by means of a set of simple matransformations, we can
change the reference frame from the “middle frame” to therezfce frame of the base-
pair 1. The orientation and position of base-pair 2 and thieltie frame” with respect to

base-pair 1 are now given by the following equations:

Rm = [T1"]7' = R.(Q/2 - ¢) Ry(T'/2) R.(9) (6)
R2 = [T1"]71 T2™ = R.(2/2 - ¢) Ry() R:(Q/2 + ¢) ™
02 = [D; Dy D,] Rm’ (8)

WhereR,,,” means the transpose of the “middle frame” expressed wignarte to base pair
1.

Using the above set of step parameters, we have the following

Rm = |
0.9537  -0.2873 0.0891
0.2885 0.9575  -0.0003
-0.0852 0.0260 0.9960]
R2 = |
0.8204 -0.5436 0.1775
0.5524 0.8336  -0.0006
-0.1476 0.0985 0.9841]
02 = [0.3853 -1.4033  3.3349] * Rm’ = [1.0677 -1.2336  3.2524]

Expressed in terms of the experimental coordinate referémaene of base pair 1, we get
the reference frame for base pair 2 which are the same as shaeation 5.4: “Base-pair
parameters”

R1 exp = [
-0.2323  -0.8985 -0.3724
0.7889  -0.3980 0.4682
-0.5689  -0.1851 0.8013]

R2_exp = Rl_exp * R2 = [
-0.6319  -0.6594  -0.4072
0.3583 -0.7144 0.6010
-0.6873 0.2339 0.6877]

0l _exp = [15.0378  0.1221  -4.6088]

02_exp = ol _exp + 02 * R1_exp = [14.6869 2.9781  -2.3818]
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5.8 Rebuilding based on local helical parameters

The local helical parameters defined in 3DNA are rigorousthod reversible. Given a set of heli-
cal parameters, the relative position and orientation ®two base pairs can be exactly reproduced
by a rebuilding procedure. Here we provide step-by-stefkingrexample so users can understand
the algorithm better.

Using the six helical parameters of the first GG/CC stepdh026 as calculated above:

X-disp Y-disp Rise Incl. Tip Twist
-3.7562  -0.2063 2.8493 16.4787 -5.0254  35.0103

There are four frames for a dinucleotide step consistingaskkpairsl and2: the base-pair
framesR; andR; and their corresponding helical framBs, andRs,. Ry, andR; are related
by x-displacement, y-displacement, inclination and tip,ase Ry, with R,. R4, and Ry, are
related byhdical rise andhdlical twist.

x1 (inclination

X (inclination)

Y tip—inclination

y2 (tip)
() (b)

Figure 8: Combination of Tip and Inclination, and calcuatof helical Twist.

1. Ry, as referencel( in superscript)

Starting withR;;, as the reference for the dinucleotide step concerned, Bignis the
identity matrixI:

Ril =T )

Rl is got by the helical twist:
R3j, = R () (10)

R1" is got by a combined rotation of magnitude(= /7 + 62) along tip-inclination axis
(Fig. 8 (a)). Thus? is the exact angle between base-pair normal and the lodahhkeglix.

Let the angle from tip-inclination axis to tip axis ke the rotation can be expressed as a
rotation about-axis by angle), followed by a rotation abouyt-axis by anglel, and then a
rotation about-axis by angle-1 to bring the axis back:
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Ri" = R.(—1) Ry(¥) R. () (11)

As shown in Fig. 8 (b)R3" is got by a helical twist, and then a rotation about the tip-
inclination axis ofR%’,; (which is related to the tig-axis of Ry, by the helical twist)y,):

R} = [R.(Q), — %) Ry(¥) R.(¥ — )] Ro () = R.( — ¥) Ry(¥) R.(v) (12)

. R; as reference

With Egs. 9 to 12, we can do some simple matrix transformatiormakeR,; as the refer-
ence:

Ri =1 (13)
Ry, = [R{"]7' =R.(—¢) Ry(-V) R.(v) (14)
Ry, = [R{" 'Ry =R.(—¢) Ry(—¥) R.(y + Q) (15)
R, = [R{"]"'RY

= R.(—¢) Ry(—¥) R.(¢) Ro(Qh — ¢) Ry(¥) R.(¢))

= R.(-¢) Ry(—¥) R.(%) Ry(¥) R.(¢) (16)

Equ. 16 describes the orientation of base-pairth reference td.

. Position vector of base-pair 2 with reference to 1

e From base-pair 1 origin to base-pair 1 helical origifldx dy] [z14 y1n)’
e From base-pair 1 helical origin to 2 helical origiz - 21, = dz - 25,

e From base-pair 2 helical origin to base-pair 2 origifldx dy] [z2n yon]’

Combining the above three items, we have the position (pasesrigin) of 2 relative to 1
as follows:

02 = [dz dy] {[2n yon]' — [w1n Y1} + dz - 21y, (17)

Note thatziy, yin, 21k, Tan, Yon, 225 ared x 1 column vectors.! means the transpose of a
vector to change it to a row vector.

. Using the example where inclination = 16.478d tip = -5.0254, we havel = \/n? + 62 =

17.2279°. The tip-inclination axis lies in the x-y plane of local teal frame of base pair
1:[16.4787 -5.0254 0] ; which when normalized give$0.9565 -0.2917 0]

The angle from the tip-inclination axif)(9565 -0.2917 0] ) to the base pair 1 helical
y-axis (tip) (0 1 0] ) with reference to the helical z-axid)( 0 1] )is = 106.9598°.

Using equations 15 to 17, we having the following:

Xiang-Jun Lu (3dna.lu@gmail.com)



Rih = [

0.9962 -0.0125  0.0864
-0.0125  0.9590  0.2833
-0.0864 -0.2833  0.9551]

R2h = [

0.8087 -0.5818  0.0864
0.5399  0.7926  0.2833
-0.2333  -0.1825  0.9551]

R2 = [

0.8204 -0.5436  0.1775
0.5524  0.8336 -0.0006
-0.1476  0.0985  0.9841]

02 = [1.0677 -1.2336  3.2524]

Compared with the numbers based on step parameters, iaistilg Egs. 16 and 7, Eqgs. 17
and 8 are equivalent.

5.9 Relation between local helical and step parameters

To refer the orientation and position of one base-pair ikaldb the other, 6 parameters (3 rotations
and 3 translations) are required. One set of such paramistéift, Slide, Rise, Tilt, Roll and
Twist), and the other set is (X-displacement, Y-displacetnilelical Rise, Inclination, Tip and
Helical Twist).

Obviously these two sets should be completely reversibpddent: from any one set you can
get the other, rigorously. You can verify this point usstgp_hel , a utility program in 3DNA.
Graphically this is best illustrated by the Calladine-Dravio B transition model by introducing
uniform Roll and Slide values at each dinucleotide step. Keyepoint is that by introducing Roll,
you also get Inclination, and with Slide, you get X-displaest.

Therebuild program in 3DNA can construct a DNA structure using eithdrafethese
parameters. Examples of such input files (ebg.,step.par ) can be
generated bwanalyze (Examples/Analyze Rebuild

We have two sets of simple equations:

andbp_helical.par
directory.)

O/n=—1/p

2cos Qp, = cos Q1 + cosT') — (1 — cosT)
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