Package ‘veriNA3d’

December 11, 2018

Type Package

Title Biological Structure Analysis

Version 0.99.0

Date 2017-03-14

Author Diego Gallego

Maintainer Diego Gallego <diego.gallego@irbbarcelona.org>

Description Structural bioinformatics is a hard field we work to make easier.
We provide tools to extract information from PDB structures, manage these
data and save the results in different kinds of plots. The package was
developed (and so the examples and vignettes) to do data mining with PDB
data focused on RNA, but most of its functionalities are extensible to the
analysis of any PDB structure.

License GPL-3
Depends R (>=3.5)

Imports methods, graphics, grDevices, stats, utils, bio3d, circlize,
parallel, jsonlite, plot3D, MASS, RColorBrewer, RANN

LazyData true

RoxygenNote 6.1.0

Roxygen list(markdown = TRUE)
Encoding UTF-8

Suggests knitr, rmarkdown
VignetteBuilder knitr

NeedsCompilation no

R topics documented:

applyToPDB e
checkNUC e e e e
CIF-Class e e e e
Cif_ACCESSOTS . . . o o o o o s
CifASPDB e e e
cifParser L e e e
classifyNA L e
cleanByPucker

2 applyToPDB
countEntities 11
dsSr .o e 11
ENLLIES L e e e 12
eRMSD . . . e 13
fastquery L 14
findBindingSite 14
getAltRepres e e e 15
getLeontisList 16
hasHetAtm o . e 17
measureElenoDisto 18
measureEntityDist. L. 19
measurelNUC i e e e e e e e e e e 20
pipeNucData 22
pipeProtNucData e 23
plotCategorical 24
plotCircularDistribution L 25
plotEtaTheta e e e 26
plotSetOfDistributions 27
queryAPL . . . e e 28
queryEntryList 29
queryFunctions L. e e 30
queryObsoleteList 31
represAsDataFrame L 32
TVECIOT . . . o o o o e e e e e 33
selectModel L 34
trimByID . .. e 35
trimSphere L e 36
veriNA3d . . . 37
Index 38
applyToPDB Applies a function over a list of PDB ID entries.
Description
Given a function of interest, it is applied to all the PDB entries. See supported functions in ?query-
Functions.
Usage
applyToPDB (FUNCTION, listpdb = NULL, as.df = TRUE, cores = 1,
progressbar = TRUE, ...)
Arguments
FUNCTION A function of interest.
listpdb A list/vector containing the PDB IDs of interest. If NULL, the complete list of

PDB entries is downloaded and used.

as.df A logical that stands for "as.data.frame". If TRUE, the output will be returned

in the form of a data.frame, otherwise a list.

checkNuc 3

cores Number of CPU cores to be used.
progressbar A logical to print in screen a progress bar.

optional arguments to FUNCTION.

Value
A data.frame with the PDB IDs (first colunm) and the output of the function of interest (second
column) or a list with the results.

Author(s)

Diego Gallego

Examples

listpdb <- c("1s72", "lbau", "lrna")
applyToPDB (queryTechnique, listpdb)

checkNuc Check nucleotides

Description
From a nucleic acid structure (pdb object), it checks the presence of all nucleotide atoms, bond
distances, chain breaks and others.

Usage

checkNuc (pdb, model = 1, chain = "all", id = NULL, refatm = "C4'",
force = FALSE)

Arguments
pdb A pdb object as obtained from cifAsPDB or read.cif/read.pdb (bio3d package).
model A string with the desired model number.
chain A string with the desired chain id.
id A string with the ID of the input pdb structure.
refatm A string with the atom to use to identify the nucelotides. Important to analyse
models with just (in example) phosphate atoms, in which refatm should be set
to "P" (it was thought when analysing the structure with PDB code: 1Y1Y).
force A logical to force the analysis. Useful when the function does not recognise a
nucleic acid in the structure (e.g. because all bases are non-canonical: 1PBL,
1XV6, 1DV4 ..)
Value

A data.frame with the data for every nucleotide.

4 CIF-class

Author(s)

Diego Gallego

Examples

data <- checkNuc (cifAsPDB("1am0"))

broken <- which (data$Break == TRUE)
datal[broken,] ## See the places in which the chain is broken
CIF-class An $4 class to represent a structure parsed from its mmCIF file.
Description

All mmCIF files in the PDB at date 2018-Feb-19th contain (just) 14 common attributes, which
are represented in the CIF objects herein with the same names as found in mmCIF documentation
http://mmcif.wwpdb.org/.

Slots

entry The ID code

audit_conform 'mmCIF’ dictionary version
database_2 Cross-reference ID codes to other databases
pdbx_database_status Deposition data
audit_author Authors

entity Entities (molecules & ions) in the structure
chem_comp Residues (ATOM & HETATM) in the structure
exptl Experimental technique

struct Author description of the structure
struct_keywords Author description key words
struct_asym Chain-entity equivalences

atom_sites Details about the crystallographic cell
atom_type Details about the atoms in structure

atom_site The atomic coordinates

Author(s)

Diego Gallego

See Also

To create CIF objects use cifParser ()

http://mmcif.wwpdb.org/

cif_accessors

cif_accessors Accessors to a CIF object

Description

S4 method to access the contents of CIF objects.

Usage

cifEntry (x)
cifAudit_conform(x)
cifDatabase_2 (x)
cifPdbx_database_status (x)
cifAudit_author (x)
cifEntity (x)
cifChem_comp (x)
cifExptl (x)
cifStruct (x)
cifStruct_keywords (x)
cifStruct_asym(x)
cifAtom_sites (x)
cifAtom_type (x)
cifAtom_site (x)

S4 method for signature 'CIF'
cifEntry (x)

S4 method for signature 'CIF'
cifAudit_conform(x)

S4 method for signature 'CIF'
cifDatabase_2 (x)

S4 method for signature 'CIF'
cifPdbx_database_status (x)

S4 method for signature 'CIF'
cifAudit_author (x)

cif_accessors

S4 method for signature 'CIF'
cifEntity (x)

S4 method for signature 'CIF'
cifChem_comp (x)

S4 method for signature 'CIF'
cifExptl (x)

S4 method for signature 'CIF'
cifStruct (x)

S4 method for signature 'CIF'
cifStruct_keywords (x)

S4 method for signature 'CIF'
cifStruct_asym(x)

S4 method for signature 'CIF'
cifAtom_sites (x)

S4 method for signature 'CIF'
cifAtom_type (x)

S4 method for signature 'CIF'
cifAtom_site (x)

Arguments

X

Value

% % ok X o ok X ot

*

a CIF object

{cifEntry} "Character’ with the mmCIF PDB ID

{cifAudit_conform} "Character’ vector with dictionary version

{cifDatabase_2} "Data.frame with cross-references

{cifPdbx_database_status} "~Character® vector with deposition data

{cifAudit_author} "Data.frame’ with author names

{cifEntity} "Data.frame’ with molecules & ions in the structure

{cifChem_comp} "Data.frame’' with residues records in the structure

{cifExptl} "~Character’ vector with experimental technique

{cifStruct} "Character' vector with author description of the
structure

{cifStruct_keywords} "~Character’ vector with author selected key words

{cifStruct_asym} "Data.frame' with chain-entity equivalences

{cifAtom_sites} "Character’ vector with details about the
crystallographic cell

{cifAtom_type} "Data.frame with about the atoms in structure

{cifAtom_site} "Data.frame'® with atomic coordinates

cifAsPDB

Author(s)

Diego Gallego

Examples

cif <- cifParser ("lbau")
coordinates <- cifAtom_site (cif)

cifAsPDB

Coerce CIF §4 object to pdb S3 object as found in bio3d package

Description

Coerces CIF to pdb class

Usage

cifAsPDB(cif,

model = NULL, chain

NULL, alt = c("A"),

verbose = FALSE)

S4 method
cifAsPDB(cif,

for signature 'CIF'
model = NULL, chain

NULL,

alt = c("A"), verbose = FALSE)

S4 method
cifAsPDB(cif,

for signature 'character'
model = NULL, chain = NULL,

alt = ¢c("A"), verbose = FALSE)

Arguments

cif

model

chain

alt

verbose

Value

A CIF object as obtained from cifParser. It can also accept a 4-character PDB
ID.

A string with the model number (in case you are only interested in a particular
model) If NULL, all models are parsed and can be selected afterwards using
selectModel. By default, the "atom" attribute of the output will contain only
the first model.

A string with the chain identifier (in case you are only interested in a particular
chain). If NULL, all chains are included.

A string or a vector of strings with the desired alternative records.

A logical indicating whether to print details of the process.

A pdb object compatible with bio3d (Grant et al. 2006) functions.

Author(s)

Diego Gallego

8 cifParser

Examples

cif <- cifParser ("lbau")
pdb <- cifAsPDB(cif)

cifParser Farse coordinates from CIF files

Description

Given a file or PDB ID, the function parses the coordinates of the structure. It can also read all the
fields of the mmCIF format.

Usage

cifParser (pdbID, verbose = FALSE)

S4 method for signature 'ANY'
cifParser (pdbID, verbose = FALSE)

Arguments

pdbID A 4-character string that matches a structure in the Protein Data Bank (or an
existing file in disk).

verbose A logical indicating whether to print details of the process.

Value

A S4 CIF object

Author(s)

Diego Gallego

Examples

cif <- cifParser ("lbau")

classifyNA 9

classifyNA Classify RNA or DNA structures

Description

The functions classify a structure in the following groups:

* NoRNA or NoDNA: the structure does not contain RNA or it is shorter than a threshold set by
"length".

* nakedRNA or nakedDNA: the only molecule(s) in the structure is RNA or DNA.

* protRNA or protDNA: the PDB contains a protein-nuc complex.

* DprotRNA or DprotDNA: the PDB contains a protein-nuc complex and the protein has D
aminoacids.

« DNARNA: the PDB contains DNA-RNA.

¢ PNARNA or PNADNA: the PDB contains PNA-RNA.

¢ ANARNA: the PDB contains ANA-RNA.

e LNARNA: the PDB contains LNA-RNA.

* ligandRNA or ligandDNA: the RNA/DNA is interacting with an organic ligand. Ions are not
considered as ligands in this class.

Usage

classifyRNA (pdbID, length = 3, force = FALSE, ...)

classifyDNA (pdbID, force = FALSE, ...)
Arguments
pdbID A 4-character string that matches a structure ID in the Protein Data Bank.
length A positive integer. Minimum numer of nucleotides to consider RNA as a poly-
mer. An RNA shorter than this threshold is classified in the NoRNA group.
force A logical to force the query instead of getting presaved data.

Arguments to be passed to query function (see ?queryFunctions).

Details

In classifyRNA, nucleic acid hybrids are considered RNA, while in in classifyDNA they are
considered DNA (e.g. pdb ID 2HVR).

10 cleanByPucker

Value

A string with the type of RNA.

Author(s)

Diego Gallego

Examples

classifyRNA("1572")

cleanByPucker Subset nucleotide data according with puckering

Description

Function to clean raw data after the pipeline pipeNucData (). It takes a data.frame that should
have the columns "pu_phase", "delta" and "Dp", and returns the nucleotides matching the desired
puckering state.

Usage
cleanByPucker (ntinfo, surenorth = FALSE, suresouth = FALSE,
pucker = "C3'endo", range = NULL, verbose = TRUE)
Arguments
ntinfo A data.frame. The output of pipeNucData ().
surenorth A logical to return nucleotides in north with restrictions in delta and Dp.
suresouth A logical to return nucleotides in south with restrictions in delta and Dp.
pucker A string with the puckering state of interest. Only necessary if surenorth and

suresouth are FALSE and range is NULL. When using this option, only the
phase is used to subset the data.

range A numeric vector with the desired phaserange. Only used if no other argument
above could be applyed.
verbose A logical to print details of the process.
Value

An integer vector with the nucleotides (ntID) matching the desired puckering state.

Author(s)

Diego Gallego

Examples

ntinfo <- pipeNucData ("lbau")
north_ntID <- cleanByPucker (ntinfo, surenorth=TRUE)
north <- ntinfo[ntinfo$ntID %in% north_ntID,]

countEntities 11

countEntities Count entities

Description

For a given pdblD, the function gets the Entity data and counts the number of instances of the
different entities (e.g. the number of different RNA, the number of different proteins...).

Usage

countEntities (pdbID, force = FALSE, ...)

Arguments
pdbID A 4-character string that matches a structure ID in the Protein Data Bank.
force A logical to force the query instead of getting presaved data.
Arguments to be passed to query function (see ?queryFunctions).
Value

A list with the number of instances of each entity.

Author(s)

Diego Gallego

Examples

countEntities ("1872")

dssr Dissecting the Spatial Structure of RNA with DSSR

Description

Wrapper function to execute DSSR (see reference below) on a DNA or RNA structure and parse
the result.

Usage

dssr (pdb, exefile = "x3dna-dssr", dssrargs = c("--nmr", "--torsion360",
"——more"), verbose = FALSE)

12 entities

Arguments
pdb It can be:
* A 4 character string corresponding to a PDB ID
* A pdb/mmcif file
* A pdb object as provided by c1i fAsPDB () or bio3d: :read.pdb ().
exefile A string with the program name
dssrargs A vector of strings with the desired arguments to feed DSSR
verbose A logical indicating whether to print details of the process.
Value

A list with the json output of DSSR

Author(s)

Diego Gallego

References

Lu, X.J. et al. (2015). "DSSR: an integrated software tool for
dissecting the spatial structure of RNA." Nucleic Acids Res.
43(21), eldz

Examples

dssr_lbau <- dssr("lbau")

entities List of NA containing PDB IDs and related data

Description

Number of each type of entity in a set of Nucleic Acid containing structures.

Usage

data (entities)

Format
An object of class data.frame

pdbID: PDB ID.

RNA: Number of different RNA entities

DNA: Number of different DNA entities

Hybrid: Number of different Hybrid DNA/RNA entities
PNA: Number of different PNA entities

Prot: Number of different Protein (L) entities

eRMSD 13

Dprot: Number of different Protein (D) entities
Ligands: Number of different ligands
Water: It’s 1 when there’s water in the structure and O when it is not

Other: Number of different "other" entities

Value

data.frame with a list and features of NA PDB IDs

eRMSD Compute the epsilon RMSD between two RNA structures

Description

Given two RNA with the same length, the functions calculates its epsilon RMSD, as defined by
Bottaro et al. 2014 (The role of nucleobase interactions in RNA structure and dynamics), reproduc-
ing baRNAba software. Methods allow as input CIF S4 objects cifParser (), pdb S3 objects
(cifAsPDB/read.pdb/read.cif) or matrices containing the "r" vectors of the desired structures.

Usage

eRMSD (cifl = NULL, cif2 = NULL, pdbl = NULL, pdb2 = NULL,
rvectorsl = NULL, rvectors2 = NULL)

S4 method for signature 'CIF,CIF'
eRMSD (cifl = NULL, cif2 = NULL)

S4 method for signature 'ANY,ANY'
eRMSD (pdbl = NULL, pdb2 = NULL, rvectorsl = NULL,
rvectors2 = NULL)

Arguments
cifl A CIF object as otained from cifParser ().
cif2 A CIF object as otained from cifParser ().
pdbl A pdb object as obtained from cifAsPDB or read.cif/read.pdb (from bio3d pack-
age).
pdb?2 A pdb object as obtained from cifAsPDB or read.cif/read.pdb (from bio3d pack-
age).
rvectorsl A data.frame as obtained from rVector () using simple_out=TRUE.
rvectors? A data.frame as obtained from rVector () using simple_out=TRUE.
Value

A numeric with the epsilon RMSD between the two structures

Author(s)

Diego Gallego

14 findBindingSite

Examples

cif <- cifParser ("2d18")

modell <- selectModel (cif=cif, model=1)
model3 <- selectModel (cif=cif, model=3)
eRMSD <- eRMSD (cifl=modell, cif2=model3)

fastquery List of NA containing PDB IDs and related data

Description

Presaved data to speed up some queries.

Usage

data (fastquery)

Format

An object of class data.frame with the following fields:

pdbID: PDB ID.

Technique: Experimental technique.

Resol: Resolution. For NMR structures it contains an empty string.
DNAclass: Output of classifyDNA function

RNAclassOver0: Output of classifyRNA with length=0 or length=1. If the structure has one or
two nucleotides, it is also considered an RNA containing structure.

RNAclassOver2: Output of classifyRNA with length=3. RNA molecules shorter than 3 are classi-
fied as NoRNA.

Value

data.frame with a list and features of NA PDB IDs

findBindingSite Function to get data about the atoms in interacting site.

Description

For pdb structures with protein-nucleic acid complexes, the function finds the atoms in the inter-
acting site. It allows the user to set as reference the nucleic acid, the protein, or particular desired
chains.

Usage

findBindingSite (pdb, cutoff = 5, select = "Nuc", nchain = NULL,
pchain = NULL, hydrogens = FALSE, byres = FALSE, verbose = FALSE,
.)

getAltRepres 15

Arguments
pdb A cif/pdb object obtained from cifParser/read.pdb respectively or a pdb ID so
that the function can download the data.
cutoff A numeric to set the maximum distance for atoms to be returned.
select A string that should match "Nuc", "Prot", "DNA" or "RNA", to be used as ref-
erence.
nchain A string with the nucleic acid chain to get data about. If NULL, all of them are
selected (according with select argument).
pchain A string with the protein chain to get data about. If NULL, all of them are
selected.
hydrogens A logical to use the hydrogens in the structure or remove them.
byres A logical to indicate if the output should be referred to the residues rather than
atoms.
verbose A logical to print details of the process.
Arguments to selectModel and/or alt records.
Value

A data.frame with the atomic distances in the interacting site.

Author(s)

Diego Gallego

Examples

pdb <- cifParser ("1b3t") # A protein-DNA complex
data <- findBindingSite (pdb, select="DNA", byres=TRUE)

getAltRepres Get Alternative Representants

Description

This function is closely related with getLeontisList(). From its output, the family members of each
equivalence class are checked for desired features. The first member that matches all the desired
features is returned.

Usage

getAltRepres (rnalist, technique = NULL, resol = NULL, type = NULL,
length = 3, progressbar = TRUE, verbose = FALSE)

16 getLeontisList

Arguments
rnalist The output of getLeontisList.
technique One or more techniques of interest (For correct use, see example below). For
the list of techniques, see "veriNA3d:::.allowedtechs".
resol A positive real number to specify a desired resolution.
type A string indicating the type of desired RNA, according with the classifyRNA
function.
length To be passed to classifyRNA.
progressbar A logical to print in screen a progress bar.
verbose A logical to print details of the process.
Value

A data.frame with info about all the "Equivalence Classes" and the selected Representants according
with the specified conditions.

Author(s)

Diego Gallego

Examples

rnalist <- getLeontisList (release=3.2, threshold="1.5A")
alternative <- getAltRepres(rnalist=rnalist,
type="nakedRNA")

getLeontisList Download Representative List of RNA structures

Description

According with Leontis & Zirbel, 2012 (Nonredundant 3D Structure Datasets for RNA Knowledge
Extraction and Benchmarking), the PDB contains structures that are redundant. Their work resulted
in the BGSU RNA Site (http://rna.bgsu.edu/rna3dhub/nrlist/) where one can find weekly releases of
Representative Sets of RNA structures (formerly called non-redundant lists). This function access
their website and returns the desired list.

Usage

getLeontisList (release = "current", threshold = "all")
Arguments

release A number indicating the list of interest.

threshold A string that matches one of the lists in the BGSU RNA site ("1.5A", "2.0A",
"2.5A", "3.0A", "3.5A", "4.0A", "20.0A", "all"). Note that "all" returns struc-
tures solved by any technique.

hasHetAtm 17

Value

A data frame with the list of Equivalence Classes and the Representant and Members of each
Equivalence Class. Note that the output is formated according with Leontis&Zirbel nomencla-
ture (AAAAIMIC), where "AAAA" is the PDB accession code, "M" is the model and "C" is the
Chain to be used.

Author(s)

Diego Gallego

Examples

data <- getLeontisList (release=3.2, threshold="1.5A")

hasHetAtm Check if a given PDB contains the ligand/modbase of interest

Description

Given a 4-character string (PDB ID) and a ligand/modbase ID, the function checks the presence
of the ligand/modres in the given PDB ID. To check for the presence of sodium ions use het-
Atms="Na" instead of NA. If you are interested on the whole list of heterogeneous atoms see
queryHetAtms ().

Usage

hasHetAtm (pdbID, hetAtms)

Arguments

pdbID A 4-character string.

hetAtms A string with the ligand/modbase ID.
Value

A logical. TRUE if the given hetAtms is present in the structure.

Author(s)

Diego Gallego

Examples

hasHetAtm("1s72", "MG") # Check if structure has Magnesium ion

18 measureElenoDist

measureElenoDist Computes distances between the atoms of interest in a mmCIF struc-
ture

Description

Given a pdb object (or a pdb ID), the function computes the distances between the desired atoms
and returns the closest ones. Note that eleno numbers might be different in the PDB vs mmCIF
formats and this may lead to errors.

Usage

measureElenoDist (pdb, model = NULL, refeleno, eleno, n = 1,
cutoff = ¢ (0, 5), verbose FALSE, detailedoutput = TRUE,
data_of_interest = NULL)

Arguments

pdb A pdb object obtained as from cifAsPDB () or read.pdb/read.cif (bio3d func-
tions)

model The model of interest to use in the calculations. The first model is always the
default.

refeleno A vector of eleno (element number) to take as reference.

eleno A vector of eleno to measure the distances.

n An integer indicating how many closests atoms to return. The default n=1 re-
turns only the closest atom; n=2 would return the two closest atoms and so on.
If NULL, any number of atoms within the cutoff will be returned.

cutoff A numeric vector indicating the distance range to consider in angstroms. Atoms
further than the cutoff won’t be returned.

verbose A logical indicating whether to print details of the process.

detailedoutput

A logical indicating whether to include additional information for each atom
(see data_of_interest below). If FALSE, only the eleno (element number) and
distances are returned.

data_of_interest
A vector of strings. Only used if detailedoutput is TRUE. The vector should only

non "non

contain the strings between the following: "type", "elety", "alt", "resid", "chain",

"o nongn o on non non

"resno”, "insert", "x", "y", "z", "o", "b", "entid", "elesy", "charge", "asym_id",
"seq_id", "comp_id", "atom_id", "model". The selected fields will be returned
for both atoms.
Value
A data.frame with the nearest atom neighbours information. Fields suffixed with *_A’ refer to the
atoms used as reference. Fields suffixed with ’_B’ refer to the ’contacting’/closest atoms.

Author(s)

Diego Gallego

measureEntityDist 19

Examples

Dowload cif file and save coordinates data
cif <- cifParser ("lenn")
coordinates <- cifAtom_site(cif)

Find atom numbers for desired entities (e.g. water and DNA)
water_eleno <- coordinates[coordinates$label_atom_id == "O", "id"]
dna_eleno <- coordinates|[coordinates$label_comp_id %in%

c("DA", "DT", "DG", "DU"), "id"]

Find which DNA atoms are in 5 Angstroms distance from the water
data <- measureElenoDist (cif, refeleno=water_eleno, eleno=dna_eleno,
n=NULL, cutoff=5)

To see the data
head (data)

measureEntityDist Computes distances between all the atoms of selected entities in a mm-
CIF structure

Description

Given a cif object (or a pdb ID), the function computes the distances between atoms of the selected
entity IDs. For each atom/residue of the reference entity the function returns the closest atoms of
the other entities. This function is a wrapper of measureElenoDist () and simplifies its use. If
you are unfamiliar with the concept of entities in a mmCIF structure see example below.

Usage
measurekEntityDist (cif, model = NULL, refent, entities = c("all"),
Arguments
cif A cif object obtained from cifParser or a pdb ID.
model The model of interest to use in the calculations. The first model is always the
default.
refent A string with the entity ID of reference. The distance output will be referred to
the atoms/residues of this entity.
entities A character vector with the entities of interest. The default "all" will select all
of them except the refent.
Additional arguments to be passed to measureElenoDist ()
Value

A data.frame with the nearest atoms neighbour information.

Author(s)

Diego Gallego

20 measureNuc

Examples

To see the entities of a given structure use:
cif <- cifParser ("lenn")
cifEntity(cif)

Supose you are interested on the interactions of water and DNA
water_entity <- 5
dna_entity <- 1

Find which DNA atoms are in 5 Angstroms distance from the water

data <- measureEntityDist (cif, refent=water_entity,
entities=dna_entity, n=10, cutoff=5)

An equivalent run without downloading the cif file previously

data <- measureEntityDist ("lenn", refent=water_entity,
entities=dna_entity, n=10, cutoff=5)

This option is better than using the example in ?measureElenoDist,
since this way it would also take into account modified residues, if
any.

measureNuc Obtain desired nucleotide measurements

Description

From a nucleic acid structure (pdb object), it computes the desired atomic distances, angles, dihedral
angles, puckering conformation and Dp distance (See definition of Dp in MolProbity paper by Chen
et al. 2010).

Usage
measureNuc (pdb, model = 1, chain = "all", v_shifted = TRUE,
b_shifted = TRUE, distances = "default", angles = "default",
torsionals = "default", pucker = TRUE, Dp = TRUE, refatm = "C4'",

force = FALSE)

Arguments
pdb A pdb object as obtained from cif ASPDB or read.cif/read.pdb (bio3d package).
model A string with the desired model number.
chain A string with the desired chain id.

v_shifted A logical. If TRUE, puckering angles (nu0 to nu4) are returned in the range O to
360 degrees. Otherwise, -180 to +180.

b_shifted A logical. If TRUE, backbone angles, chi and kappa are returned in the range 0
to 360 degrees. Otherwise, -180 to +180.

distances A data.frame indicating all the intra and inter-nucleotide atomic distances of
interest. See details section. A default option is preconfigured to simplify the
use of the function and can be seen typing "veriNA3d::.distances’.

measureNuc

angles

torsionals

pucker

Dp

refatm

force

Details

21

A data.frame indicating all the intra and inter-nucleotide angles of interest. See
details section. A default option is preconfigured to simplify the use of the
function and can be seen typing ’veriNA3d::.angles’.

A data.frame indicating all the intra and inter- nucleotide torsional angles of
interest. See details section. A default option is preconfigured to simplify the
use of the function and can be seen typing 'veriNA3d::.torsionals’.

A logical indicating whether to compute the puckering.
A logical indicating whether to compute the Dp distance.

A string with the atom to use to identify the nucelotides. Important to analyse
models with just (in example) phosphate atoms, in which refatm should be set
to "P" (it was thought when analysing the structure with PDB code: 1Y1Y).

A logical to force the analysis. Useful when the function does not recognise a
nucleic acid in the structure (e.g. because all bases are non-canonical: 1PBL,
1XV6, 1DV4 ...)

The format of ’distances’, ’angles’ and ’torsionals’ is: First column should indicate the first atom,
second column second atom (and so on in the case of angles and torsional angles). An extra last
column is optional and should contain the names to identify each measurement in the output. Plane
atom names are interpreted as intra- nucleotide measurments. For inter-nucleotide measurments
use the prefix "pre_" or "post_" before the atom name. In example, to compute all inter-phosphate
distances, use as argument:

distances=data.frame(atomA=c("P"), atomB=c("post_P"), labels=c("interphosphate"), stringsAsFac-

tors=FALSE)

Value

A data.frame with the measurements for every nucleotide.

Author(s)

Diego Gallego

Examples

distances <- data.frame (atomA=c("P"), atomB=c ("post_P"),

labels=c("interphosphate"),
stringsAsFactors=FALSE)

measureNuc (cifAsPDB ("1lbna"), distances=distances, angles=NULL,

torsionals=NULL, Dp=NULL)

22 pipeNucData

pipeNucData Obtain nucleotide details from a data set of RNA structures

Description

Pipeline to generate a data.frame with the desired info for a list of PDB. Nucleotides are labeled
with a unique identifier (column ntID).

Usage

pipeNucData (pdbID, model NULL, chain NULL, range = c (3, 1le+05),
path = NULL, extension = NULL, cores = 1, progressbar = TRUE,
.)

Arguments

pdbID A list/vector containing the desired PDB IDs or a list of pdb objects as provided
by "read.pdb", "read.cif", "cifParser" ...

model A vector with same length of pdbID containing the desired model for each
pdbID. If all models are desired, use "all". If no models are specified, the first
one will be used for each pdbID.

chain A vector with same length of pdbID containing the desired chain for each pdbID.
If no chain is specified, all chains will be analysed by default. Non-nucleic acid
chains will be ignored.

range A numeric vector with two values to indicate the desired length range for the
Nucleic Acid chains. If a chain falls outside the range, it is not analysed.

path Directory in which the PDB/CIF files can be found (if NULL, the function will
download them). If you provide a "path", make sure the file names are the PDB
IDs followed by ".cif" or "pdb". The function will find them using the strings in
pdbID, so make sure you use the same case.

extension A string matching the files extension (e.g. ".pdb", ".cif", "pdb.gz", "cif.gz").
Only necessary if the PDB files are to be read from disk and a path is provided.

cores Number of CPU cores to be used.

progressbar A logical to print in screen a progress bar.

Arguments to be passed to measureNuc ()

Value

A data.frame with data about every nucleotide in the input set

Author(s)

Diego Gallego

pipeProtNucData

Examples

23

This is a toy example, see vignettes for real-world usages.
pdblist <- list("lbau", "2rnl")

model <-
chain <-

liSt("l", "21!)
list("all", "all")

ntinfo <- pipeNucData (pdbID=pdblist, model=model, chain=chain)

pipeProtNucData Obtain nucleotide-protein interactions from a data set of structures

Description

Pipeline to generate a data.frame with the data about the closests nucleotides to the protein for a list
of PDB. The data can be related to unique nucleotide indentifiers (ntID) by providing the output of
the independent pipeline pipeNucData ().

Usage

pipeProtNucData (pdbID, model = NULL, chain = NULL, ntinfo = NULL,
path = NULL, extension = NULL, cores = 1, progressbar = TRUE,

cutoff =

Arguments

pdbID

model

chain

ntinfo

path

extension

cores
progressbar

cutoff

Value

15, ...)

A list/vector containing the desired PDB IDs or a list of pdb objects as provided
by "read.pdb", "read.cif", "cifParser" ...

A vector with same length of pdbID containing the desired model for each
pdbID. If all models are desired, use "all". If no models are specified, the first
one will be used for each pdbID

A vector with same length of pdbID containing the desired chain for each pdbID.
If no chain is specified, all chains will be analysed by default. Non-nucleic acid
chains will be ignored.

Optional. A data.frame obtained from pipeNucData () for the same dataset
(or bigger), but not smaller.

Directory in which the PDB/CIF files can be found (if NULL, the function will
download them). If you provide a "path", make sure the file names are the PDB
IDs followed by ".cif" or "pdb". The function will find them using the strings in
pdbID, so make sure you use the same case.

A string matching the files extension (e.g. ".pdb", ".cif", "pdb.gz", "cif.gz").

Only necessary if the PDB files are to be read from disk and a path is provided.

Number of CPU cores to be used.

A logical to print in screen a progress bar.

A numeric with the maximum distance to return. To be passed to findBindingSite ()

Additional arguments to be passed to findBindingSite ()

A data.frame with data about the atomic distances in the interacting sites of every structure in the

input set.

24 plotCategorical

Author(s)
Diego Gallego

Examples

This is a toy example, see vignettes for more usages.
pdblist <= list ("lnyb", "2msl")
aantinfo <- pipeProtNucData (pdbID=pdblist)

plotCategorical Barplot wrapper

Description

Function to make more straigtforward the process of ploting a barplot for categorical data.

Usage

plotCategorical (ntinfo, field, ntID = NULL, na.rm = FALSE,
main = NULL, cex = 0.5, file = NULL, width = 15, height = 15,

bg = "white", units = "cm", res = 200)
Arguments
ntinfo A data.frame with the input data. It should contain the columns with the desired
categorical data and a column labeled ntID.
field The column name with the desired data.
ntID A vector of integers with the desired nucleotides of analysis. If NULL all the
nucleotides in the data.frame will be used.
na.rm A logical to remove missing data.
main A string with the title of the plot.
cex To be passed to the par() function
file A string with the name of the output file. If NULL, the plot will be printed to
screen.
width The width of the plot (passed to the png() function)
height The height of the plot (passed to the png() function)
bg The background color of the plot (passed to the png() function)
units The unit to measure height and width (passed to the png() function)
res Resolution (passed to the png() function)
Value

A barplot with the categorical data of interest, which can be directly saved to a ".png" file.

Author(s)

Diego Gallego

plotCircularDistribution 25

Examples

To see all the types of trinucleotides in the dataset:
ntinfo <- pipeNucData ("lbau")
plotCategorical (ntinfo=ntinfo, field="localenv")

plotCircularDistribution
Plot a scatter &frequency circular plot for angular data

Description

For a vector of angular data (0 to 360), the function plots the distribution in a circular format.

Usage

plotCircularDistribution(data, clockwise = FALSE, start.degree = 0,
main = NULL)

Arguments
data A numeric vector with the data to plot.
clockwise A logical indicating the sense in which the data should be displayed.

start.degree An integer with the position in which the data starts being ploted.

main A string with the title of the plot.

Value

A circular plot with the input data

Author(s)

Diego Gallego

Examples

ntinfo <- pipeNucData ("lbau")

C3endo_ntID <- cleanByPucker (ntinfo, pucker="C3'endo")
C3endo <- ntinfo[ntinfo$ntID %$in% C3endo_ntID,]
plotCircularDistribution (C3endo[, "delta"])

26

plotEtaTheta

plotEtaTheta

Plot eta-theta

Description

Function to plot eta-theta and highlight the most populated regions.

Usage

plotEtaTheta (ntinfo, ntID = NULL, dens = NULL, bandwidths = NULL,
eta = "eta", theta = "theta", drawcontour = TRUE,
sd_over_mean_contours = c(1, 2, 4), highlight_helical = TRUE,

points
height =

= NULL, colpoints = "red", file = NULL, width = 15,
15, bg = "white", units = "cm", res = 200)

plotEtaTheta3D (ntinfo, ntID = NULL, dens = NULL, bandwidths = NULL,

eta = "eta", theta = "theta", defaultview = NULL, thetaplot,
phiplot, cleanerview = FALSE, file = NULL, width = 15,
height = 15, bg = "white", units = "cm", res = 600)
Arguments
ntinfo A data.frame with the input data. It should contain the columns with eta and
theta data and a column labeled ntID.
ntID A vector of integers with the desired nucleotides of analysis. If NULL all the
nucleotides in the data.frame will be used.
dens The output of a kernel density estimation (e.g. kde2d function) over the data of
interest. If it is NULL and drawcontour=TRUE, it will be computed under the
hood.
bandwidths In case dens=NULL and drawcontour=TRUE, it will be passed to kde2d().
eta A string with the parameter to be placed in the x axis.
theta A string with the parameter to be placed in the y axis.
drawcontour A logical to highlight the most populated regions of the plot.

sd_over_mean_contours

A numeric vector with the standard deviations over the mean to plot the contours
(in case drawcontour=TRUE).

highlight_helical

points

colpoints
file

width
height
bg

units

A logical to highlight the helical region of the eta-theta plot.

An integer vector for advanced usage of the function. It should contain the ntID
of the nucleotides to print in a different color.

A string with the desired color if points is not NULL.

A string with the name of the output file. If NULL, the plot will be printed to
screen.

The width of the plot (passed to the png() function)

The height of the plot (passed to the png() function)

The background color of the plot (passed to the png() function)
The unit to measure height and width (passed to the png() function)

plotSetOfDistributions 27

res Resolution (passed to the png() function)

defaultview A string to set different default options. Chose between *2Dupview’, ’leftview’
and ’rightview’.

thetaplot Argument to be pased to persp3D () to set the view perspective.

phiplot Argument to be pased to persp3D () to est the view perspective.

cleanerview A logical to remove the lower density region to get a cleaner plot.

Value
A plot in screen, which can be directly saved to a ".png" file. * plotEtaTheta A scatter plot with
eta-theta values. * plotEtaTheta3D A density map of the data in 3D.

Author(s)
Diego Gallego

Examples

ntinfo <- pipeNucData ("lbau")
C3endo_ntID <- cleanByPucker (ntinfo, pucker="C3'endo")
plotEtaTheta (ntinfo=ntinfo, ntID=C3endo_ntID)

plotSetOfDistributions
Plot distribution of desired angles in circular plots

Description

Given a data.frame with nucleotides data, it generates a series of circular plots for the desired angles.
NA in the data are ignored.

Usage
plotSetOfDistributions (ntinfo, ntID = NULL, angles = c("alpha", "beta",
"gamma", "delta", "epsilon", "zeta", "chi", "pu_phase"), cex = 0.6,
cols = 3, file = NULL, width = 15, height = 15, bg = "white",
units = "cm", res = 200)
Arguments
ntinfo A data.frame with the input data. It should contain the columns with the desired
angles and a column labeled ntID
ntID A vector of integers with the desired nucleotides of analysis. If NULL all the
nucleotides in the data.frame will be used
angles The column names with the desired data
cex To be passed to the par.
cols Number of columns in the ouput picture.
file A string with the name of the output file. If NULL, the plot will be printed to

screen.

28 queryAPI

width The width of the plot to be passed to png.
height The height of the plot to be passed to png.
bg The background color of the plot to be passed to png.
units The unit to measure height and width to be passed to png.
res Resolution to be passed to png.

Value

A series of circular plots with the distributions of the desired angles, which can be directly saved to
a ".png" file.
Author(s)

Diego Gallego

Examples

ntinfo <- pipeNucData ("lbau")
C3endo_ntID <- cleanByPucker (ntinfo, pucker="C3'endo")

Plot torsional angles for C3'endo nucleotides
plotSetOfDistributions (ntinfo=ntinfo, ntID=C3endo_ntID,
file="1bau_C3endo.png")

Which is the same as doing:
C3endo <- ntinfo[ntinfo$ntID %$in% C3endo_ntID,]
plotSetOfDistributions (ntinfo=C3endo, file="1bau_C3endo.png")

queryAPT Launch queries to the MMB or EBI APlIs

Description

Given a 4-character string (PDB ID) and the desired "info", it sends a query to the desired API
and returns the output. This is an intermediate wrapper called by most of the queryFunctions (for
documentation see ?queryFunctions).

Usage

queryAPI (ID, info = NULL, API = "default", stringl = NULL,
string2 = NULL, reuse = TRUE, envir = parent.frame(n = 2),
verbose = FALSE)

Arguments
ID A 4 character string that matches a structure in the Protein Data Bank, or a 3
character string matching a compound.
info A string with the desired query name.
API A string that matches "ebi" or "mmb".

stringl A string to configure the query. See example below.

queryEntryList 29

string2 A string to configure the query. See example below.

reuse

A logical. Set to TRUE if the same query is going to be send repeatedly, so that
the result is saved in RAM (ir provides faster user access and avoids unnecessary
work in the servers).

envir Environment to save&retrieve the data if reuse is TRUE.
verbose A logical. TRUE to print details of the process.
Value

A vector or data.frame with the desired data.

Author(s)
Diego Gallego

Examples
Imagine you want to programmatically access the EBI API contents
through "http://www.ebi.ac.uk/pdbe/api/topology/entry/1s72/chain/H".
'queryAPI' understands it with four intructions:
'API="ebi"' stands for the root of the website name ("http.../api/").
'stringl' is the string from the root to the pdb ID.
'ID' is just the PDB code.
'string2' is the string after the pdb ID.
Thus, the call would be:

data <- queryAPI (ID="1s72", API="ebi",

stringl="topology/entry/", string2="chain/H/")

queryEntryList Downloads the list of ID of ALL current PDB entries

Description

Function to get the list of ALL PDB IDs in the Protein Data Bank at the moment.

Usage

queryEntryList ()

Value

A vector with all the PDB ID entries (updated weekly).

Author(s)

Diego Gallego

Examples

pdblist <- queryEntryList ()

30 queryFunctions

queryFunctions General functions to query PDB (Protein Data Bank) data

Description

Strightforward way to access structural data by making queries through the EBI or MMB mirrors
of the PDB.

Usage
queryAuthors (pdbID, ...)
queryChains (pdbID, chain = NULL, subset = NULL, ...)
queryDescription (pdbID, ...)
queryCompType (pdbID, ...)
queryDepdate (pdbID, ...)
queryEntities (pdbID, ...)
queryFormats (pdbID, ...)
queryHeader (pdbID, ...)
queryHetAtms (pdbID, NAtoNa = TRUE, ...)
queryModres (pdbID, onlymodres = FALSE, ...)
queryNDBId (pdbID, ...)
queryLigands (pdbID, onlyligands = FALSE, NAtoNa = TRUE, ...)
queryOrgLigands (pdbID, ...)
queryReldate (pdbID, ...)
queryResol (pdbID, force = FALSE, ...)
queryRevdate (pdbID, ...)
queryStatus (pdbID, ...)
queryTechnique (pdbID, force = FALSE, ...)

Arguments

pdbID A 4-character string that matches a structure in the Protein Data Bank.

For advanced usage, arguments to be passed to subfunction queryAPT ().

queryObsoleteList 31

chain A string with the chain identifier (in case you are only interested in a particular
chain). If NULL, the info about all the chains is returned.

subset Optional argument indicating "type", "length" or "description". If NULL, all the
columns in the data.frame are returned.

NAtoNa A logical. If TRUE, sodium ion (NA) is modified as "Na".

onlymodres A logical. If TRUE, only the modified residues are returned.
onlyligands A logical. If TRUE, the function only returns the list of unique ligands.
force A logical to force the query to the API (TRUE) or allow checking presaved data.

Value

A character vector or data.frame with the desired information: * queryAuthors List of authors.
* queryChains Data frame with list of chains and properties. * queryDescription Author de-
scription of the entry. * queryCompType Type of entry as defined in PDB (e.g. Prot-nuc). *
queryDepdate Deposition date. * queryEntities Data frame with list of entities and properties. *
queryFormats Files available for the entry (e.g. to check if pdb format is available for the struc-
ture). * queryHeader Classification of the structure as it appears in the header (PDB format) or in
the "_struct_keywords.pdbx_keywords" field (mmCIF format). * queryHetAtms List of HETATM
(modified residues and ligands). * queryModres List of modified residues. * queryNDBId NDB ID
for Nucleic Acids. * queryLigands Retrieves ligands. * queryOrgLigands Retrieves just the organic
ligands (not ions). * queryReldate Release date. * queryResol Resolution * queryRevdate Revision
date. * queryStatus PDB status. * queryTechnique Experimental technique

Author(s)

Diego Gallego

Examples

queryTechnique ("4y4o0")
queryAuthors ("1s72")
queryNDBId ("1lbau")

queryObsoleteList Downloads the list of ID of ALL current PDB entries

Description

Function to get the list of Obsolete PDB IDs in the Protein Data Bank at the moment.

Usage

queryObsoleteList ()

Value

A vector with all the PDB ID entries (updated weekly).

Author(s)

Diego Gallego

32 represAsDataFrame

Examples

obsolete <- queryObsoletelList ()

represAsDataFrame Coerce Representative list to a data.frame

Description

Takes the output of getLeontisList or getAltRepres, which represent molecules with the format
"XXXXIMIC+XXXXIMIC" (XXXX: PDB ID; M: Model; C: Chain) and returns a data.frame with
a more friendly structure:

* Col 1: Equivalence Class.
* Col 2: PDB ID.

* Col 3: Model.

* Col 4: Chain.

Columns 2 to 4 can be the direct input of pipeNucData ()

Usage

represAsDataFrame (nrlist)

Arguments

nrlist The output of getLeontisList () or getAltRepres ().

Value

A data frame with the data of the representative structures

Author(s)

Diego Gallego

Examples

data <- getLeontisList (release=3.2, threshold="1.5A")
reps <- represAsDataFrame (nrlist=data)

rVector

33

rVector

Compute the rVectors between the bases of a RNA structure

Description

Given a RNA structure it computes the "r" vetors between all bases, as defined by Bottaro et al.
2014 (The role of nucleobase interactions in RNA structure and dynamics). This function is the
basis to compute the epsilon RMSD (see the same paper for details and run it with eRMSD ()).
Furthermore, it also computes two more metrics:

1. The gamma angle, as obtained between the x axis of the coordinate system for all the bases
projected on the referece base plane and the x axis of the latter. This is a metric of the relative
rotation between bases along the orthogonal to the base plane axis (z).

2. The beta angle, as obtained between the base planes normal to account for the degree of
coplanarity between bases.

Usage

rVector (cif,

S4 method
rVector (cif,

S4 method
rVector (cif,

simple_out

S4 method
rVector (pdb,

Arguments
cif

pdb

outformat

simple_out

Value

pdb, outformat = "rvector", simple_out = TRUE)

for signature 'CIF'
outformat = "rvector", simple_out = TRUE)

for signature 'character'
outformat = "rvector",
= TRUE)

for signature 'ANY'
outformat = "rvector", simple_out = TRUE)

A CIF object as otained from cifParser.

A pdb object as obtained from cifAsPDB or read.cif/read.pdb (from bio3d pack-
age).

A string indicating the output format. This could be: "rvector", "vector_coord"
or "cylindrical_coord".

"rvector": (r(x)/a, r(y)/a, r(z)/b), being a=5 and b=3.

"vector_coord": (r(x), r(y), 1(2)).

"cylindrical_coord": (rho, phy, z).

See reference paper for more details. This does not apply to the gamma and
beta angles.

A logical to simplify the output to a matrix.

A list of data.frames for the values of each base or a single matrix with all the data appended.

Author(s)

Diego Gallego & Leonardo Darre

34 selectModel

Examples

cif <- cifParser ("2d18")
modell <- selectModel (cif=cif, model=1)
vectors <- rVector (cif=modell, simple_out=FALSE)

selectModel Selects a desired model from a CIF/pdb structure

Description

Given a object obtained from cifParser/cifAsPDB or read.cif/read.pdb functions (from bio3d speci-
fying "multi = TRUE"), the function returns an object of the same type (CIF or pdb) with the desired
model. Since some structures deposited in the PDB contain models with different number of atoms,
the pdb objects in R require a special treatment. The cifAsPDB and selectModel functions can cope
with these structures (e.g. 1JTW).

Usage
selectModel (cif, pdb, model, verbose = FALSE)

S4 method for signature 'CIF'
selectModel (cif, model, verbose = FALSE)

S4 method for signature 'ANY'

selectModel (pdb, model, verbose = FALSE)
Arguments
cif A CIF object as otained from cifParser.
pdb A pdb object with multiple models (obtained from cif AsPDB or read.cif/read.pdb
from bio3d package).
model A string with the desired model number.
verbose A logical to print messages on screen.
Value

A CIF/pdb object with the desired model coordinates.

Author(s)

Diego Gallego

Examples

cif <- cifParser ("1lgfqg")
model3 <- selectModel (cif=cif, model=3)

trimByID 35

trimByID Calls trimSphere to generate smaller pdb files

Description

Given a data frame with nucleotide info (as obtained from pipeNucData) and the desired nucleotide
index (ntID), the function returns a pdb object or file allowing the user to select a number of 5 and
3’ neighbors in sequence and non-conected residues in a cutoff radius.

Usage
trimByID (cif = NULL, ntID, ntinfo, prev = 2, post = 2,
verbose = TRUE, file = NULL, ...)
Arguments
cif A cif/pdb object obtained from cifParser/read.pdb respectively or a pdb ID so

that the function can download the data. If NULL, the function will extract the
pdb ID from the ntinfo data frame (pdbID col).

ntID An integer/string with the desired nucleotide ID for analysis.

ntinfo a data.frame with the data. It should contain at least the columns "pdbID",
"chain", "model", "resno", "insert" and "ntID" (as the output of pipeNucData
function).

prev Number of desired 5’ neigbours to be returned.

post Number of desired 3’ neigbours to be returned.

verbose A logical to print details of the process.

file A string to save the output in a pdb formated file. If NULL the fucntions just

returns the pdb object.
Arguments to be passed to trimSphere (type ?trimSphere for details)

Value

A smaller pdb object or a pdb file.

Author(s)

Diego Gallego

Examples

cif <- cifParser ("lbau")
ntinfo <- pipeNucData (cif, torsionals=NULL, distances=NULL, angles=NULL)

Obtain a smaller pdb of the 4th nucleotide +-2 neigbours and a

sorrounding sphere of 5 Angstroms

pdb <- trimByID(cif=cif, ntinfo=ntinfo, ntID=4, prev=2, post=2,
cutoff=5)

Same process saving the output in a file:
trimByID (cif=cif, ntinfo=ntinfo, ntID=4, prev=2, post=2,
cutoff=5, file="output.pdb")

36 trimSphere

trimSphere Trim a pdb/cif object to obtain a nucleotide/s of interest and the sur-
rounding area.

Description

From a pdb/CIF object, the nucleotide of interest and a radius, the function finds all the atoms in
the given area and returns a pdb object that only includes the nearest atoms.

Usage

trimSphere(cif, model = NULL, ntindex = NULL, chain = NULL,
sel = NULL, cutoff = 8, cutres = FALSE, file = NULL,

verbose = TRUE, ...)
Arguments
cif A cif/pdb object obtained from cifParser/read.pdb respectively or a pdb ID so
that the function can download the data.
model The model of interest to use in the calculations. The first model is always the
default.
ntindex A numeric index/indices for the position of the desired nucleotides in the given

chain. Not necessary if you provide sel (see below).

chain A string with the chain of interest. Not necessary if you provide sel (see below)..

sel A "select" object as obtained from atom.select (bio3d). Note that if you are
using this option, cif must be the same input object you used for the atom.select
function.

cutoff A numeric indicating the radius in angstroms to select around the desired nu-

cleotides. If O only the nucleotides are returned.

cutres A logical. TRUE to return only what it is found in the cutoff (residues in
the boundaries of the cutoff are usually truncated) or FALSE to return whole
residues even if further than the cutoff.

file A string to save the output in a pdb formated file. If NULL the fucntions just
returns the pdb object.

verbose A logical to print details of the process.

Arguments to be passed to internal functions.

Value

A smaller pdb object or a pdb file.

Author(s)

Diego Gallego

veriNA3d 37

Examples

Toy example:
cif <- cifParser("1s72")

Generate a smaller pdb with the residues 55 to 58 of the RNA chain

"9" with a sorrounding sphere of 5 Angstroms:

smallerpdb <- trimSphere(cif, ntindex=seq(55, 58, 1), chain="9",
cutoff=5, verbose=FALSE)

Same process saving the output in a file:
smallerpdb <- trimSphere(cif, ntindex=seq(55, 58, 1), chain="9",
cutoff=5, verbose=FALSE, file="output.pdb")

Second example:
Obtain a PDB with just the interacting region between RNA and prot
pdb <- cifAsPDB("lnyb")
data <- findBindingSite (pdb, select="RNA", byres=TRUE)
sel <- bio3d::atom.select (pdb,

eleno=append (dataSeleno_A, data$eleno_B))
trimSphere (pdb, sel=sel, file="interacting_site.pdb", verbose=FALSE)

veriNA3d veriNA3d: Structural bioinformatics package for data mining of the
PDB.

Description

The data pipeline starts obtaining, cleaning and exploring data. When considering biological data,
reproducibility, scalability and standardization usually become issues. veriNA3d provides tools to
analyse PDB (Protein Data Bank) structural data - with a focus on RNA - while making these issues
easy to address. It makes data mining straightforward by providing three categories of functions to
get, manage and explore data.

Get/query functions

The query functions ...

Manage/compute functions

The manage functions ...

Explore/save functions

The explore functions ...

Author(s)

Diego Gallego diego.gallego @irbbarcelona.org

mailto:diego.gallego@irbbarcelona.org

Index

*Topic datasets
entities, 12
fastquery, 14

applyToPDB, 2
bio3d::read.pdb (), 12

checkNuc, 3

CIF (CIF-class), 4

CIF-class,4

cif_accessors,5

cifAsPDB, 7

cifAsPDB (), 12,18

cifAsPDB, character—-method
(cifAsPDB),7

cifAsPDB,CIF-method (cifAsPDB),7

cifAtom_site(cif _accessors),S

cifAtom_site, CIF-method
(cif_accessors), 5

cifAtom_sites (cif_accessors),5

cifAtom_sites,CIF-method
(cif_accessors),5

cifAtom_type (cif_accessors),5

cifAtom_type,CIF-method
(cif_accessors), 5

cifAudit_author (cif_accessors),5

cifAudit_author, CIF-method
(cif_accessors),5

cifAudit_conform(cif_accessors),
5

cifAudit_conform, CIF-method
(cif_accessors),5

cifChem_comp (cif_accessors),5S

cifChem_comp, CIF-method
(cif_accessors),5

cifDatabase_2 (cif_accessors),5

cifDatabase_2,CIF-method
(cif_accessors), 5

cifEntity (cif_accessors),5

cifEntity, CIF-method
(cif_accessors),5

cifEntry (cif_accessors),5

38

cifEntry,CIF-method
(cif_accessors),5S
cifExptl (cif_accessors), 5
cifExptl, CIF-method
(cif_accessors),5S
cifParser, 8
cifParser(),4, 13
cifParser, ANY-method (cifParser),
8
cifPdbx_database_status
(cif_accessors),5S
cifPdbx_database_status, CIF-method
(cif_accessors),5S
cifStruct (cif_accessors),5
cifStruct,CIF-method
(cif_accessors),5S
cifStruct_asym(cif_accessors),5
cifStruct_asym,CIF-method
(cif_accessors),5S
cifStruct_keywords
(cif_accessors),5S
cifStruct_keywords, CIF-method
(cif_accessors),5
classifyDNA (classifyNA),9
classifyNA, 9
classifyRNA (classifyNA), 9
cleanByPucker, 10
countEntities, 11

dssr, 11

entities, 12

eRMSD, 13

eRMSD (), 33

eRMSD, ANY, ANY-method (eRMSD), 13
eRMSD, CIF, CIF-method (eRMSD), 13

fastquery, 14
findBindingSite, 14
findBindingSite (), 23

getAltRepres, 15
getAltRepres (), 32
getLeontisList, 16

INDEX

getLeontisList (), 32
hasHetAtm, 17

measureElenoDist, 18
measureElenoDist (), /9
measureEntityDist, 19
measureNuc, 20
measureNuc (), 22

pipeNucData, 22
pipeNucbhata (), 10, 23, 32
pipeProtNucData, 23
plotCategorical, 24
plotCircularDistribution, 25
plotEtaTheta, 26

plotEtaThetal3D (plotEtaTheta), 26
plotSetOfDistributions, 27

queryAPT, 28
queryAPI (), 30
queryAuthors (queryFunctions), 30
queryChains (queryFunctions), 30
queryCompType (queryFunctions), 30
queryDepdate (queryFunctions), 30
queryDescription
(queryFunctions), 30
queryEntities (queryFunctions), 30
queryEntryList, 29
queryFormats (queryFunctions), 30
queryFunctions, 30
queryHeader (queryFunctions), 30
queryHetAtms (queryFunctions), 30
queryHetAtms (), 17
queryLigands (queryFunctions), 30
queryModres (queryFunctions), 30
queryNDBId (queryFunctions), 30
queryObsoletelist, 31
queryOrgLigands (queryFunctions),
30
queryReldate (queryFunctions), 30
queryResol (queryFunctions), 30
queryRevdate (queryFunctions), 30
queryStatus (queryFunctions), 30
queryTechnique (queryFunctions),
30

represAsDataFrame, 32

rVector, 33

rVector (), 13

rVector, ANY-method (rVector), 33

rVector, character-method
(rVector), 33

rVector,CIF-method (rVector), 33

selectModel, 34

selectModel, ANY-method
(selectModel), 34

selectModel, CIF-method
(selectModel), 34

trimByID, 35
trimSphere, 36

veriNA3d, 37
veriNA3d-package (veriNA3d), 37

39

	applyToPDB
	checkNuc
	CIF-class
	cif_accessors
	cifAsPDB
	cifParser
	classifyNA
	cleanByPucker
	countEntities
	dssr
	entities
	eRMSD
	fastquery
	findBindingSite
	getAltRepres
	getLeontisList
	hasHetAtm
	measureElenoDist
	measureEntityDist
	measureNuc
	pipeNucData
	pipeProtNucData
	plotCategorical
	plotCircularDistribution
	plotEtaTheta
	plotSetOfDistributions
	queryAPI
	queryEntryList
	queryFunctions
	queryObsoleteList
	represAsDataFrame
	rVector
	selectModel
	trimByID
	trimSphere
	veriNA3d
	Index

