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VeriNA3d: introduction and use cases

1 Introduction: Structural Bioinformatics in R

The R language provides an excellent interface for statistical analysis, which is also interesting
from the point of view of structural data. This gap was filled in 2006 by the R package bio3d
(Grant et al. 2006). It was presented as a suite of tools to handle PDB formated structures,
and trajectories. It integrates a variety of functions to analyse from sequence to 3D structure
data (RMSD, NMA, PCA. . . see their documentation for details). As far as we know, bio3d
represented the only structural package for R until now.
The R package presented in here, veriNA3d, does not replace bio3d at all. Rather, it was
developed on top of it to cover additional necessities. The only common tool integrated in
both packages is a parser for mmCIF files (see below). veriNA3d is mainly intended (but not
limited) to the analysis of Nucleic Acids. It integrates a higher level of abstraction than bio3d
since it also allows the analysis of datasets, in addition to analysis of single structures. The
functions in the package could be divided in the following blocks:

• Dataset level: Functions to get and analyse lists of pdb IDs. This includes access to the
representative lists of RNA by (Leontis and Zirbel 2012) and other analytical functions.

• Structure level: Functions to get data, parse mmCIF files and analyse these data.
• Plots: examples to show the results of the previous analysis.

The complete list of functions can be found in the README.md file within the package, also
accessible on the gitlab main page.
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2 Parsing mmCIF files

2.1 Origin and standardization of mmCIF files

Atomic structural data of macromolecules has long been distributed in the PDB file format.
However, one of its main limitations is the column size for the coordinates data, which didn’t
allowed to save molecules with more than 99999 atoms, more than 62 chains or more than
9999 residues (in a chain).
Given that the Protein Data Bank is continously growing and accepting bigger structures
(e.g. a whole E.coli ribosome has over 140000 atoms - pdbID 4V4S), an alternative file format
became the standard: the mmCIF file format.
The mmCIFs are an evolution of the Crystallographic Information File (CIF), originally used for
small molecule structures. It stands for macromolecular CIF file, and it has actually coexisted
with the PDB format since the 1997. However, since the PDB is easier to parse and such big
structures didn’t populate the database at the time, most software has been developed for
the PDB format.
The PDB format was definetely frozen in 2014. However, it will still coexist with the standard
mmCIF format as long as all softwares evolve to accept mmCIFs. Following this trend, the
bio3d R package integrated a read.cif function in their version 2.3. At that time, we had
already started the development of our own cifParser function. Given that the mmCIF format
is constantly evolving and that both functions take slightly different approaches, we decided
to offer our own version of it, which might provide an useful and fast alternative for users
working with mmCIF files.

2.2 The CIF object

Parsing a particular file format often involves creating a new class of object. In R, the principal
objects are called S3, S4 and RC. Our container for mmCIF data is an S4 object called CIF,
in contrast with the S3 object (called pdb) in bio3d - it is worth noting that this difference
does not affect the compatibility between the two packages (see below for details).
Since different mmCIF files usually have different sections of data (in addition to the coordi-
nates), we carried out an analisis that checked which ones are always present in all mmCIF
files (this included all mmCIF files in the Protein Data Bank in March 2018), and reached a
list of 14 items:

• Atom_site
• Atom_sites
• Atom_type
• Audit_author
• Audit_conform
• Chem_comp
• Database_2
• Entity
• Entry
• Exptl
• Pdbx_database_status
• Struct
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• Struct_asym
• Struct_keywords

The detailed description of each data sections can be found in the mmCIF main site.
The CIF object is created by the cifParser function and contains these 14 sections of data,
which can be accessed with the CIF accessors. To see the accessor functions run:
library(veriNA3d)

?cif_accessors

To read a mmCIF file and access the coordinates data, use:
## To parse a local mmCIF file:

# cif <- cifParser("your-file.cif")

## To download from PDB directly:

cif <- cifParser("1bau")

cif

#>

#> -- mmCIF with ID: 1BAU ------------------------------------------------------

#>

#> Author description: NMR STRUCTURE OF THE DIMER INITIATION COMPLEX OF HIV-1 GENOMIC RNA, MINIMIZED AVERAGE STRUCTURE

#> mmCIF version: 5.279

#>

#> To extract coordinates and other data use accessor functions

#> (type ?cif_accessors for details)

## To see the coordinates:

coords <- cifAtom_site(cif)

head(coords)

#> group_PDB id type_symbol label_atom_id label_alt_id label_comp_id

#> 1 ATOM 1 O O5' . G

#> 2 ATOM 2 C C5' . G

#> 3 ATOM 3 C C4' . G

#> 4 ATOM 4 O O4' . G

#> 5 ATOM 5 C C3' . G

#> 6 ATOM 6 O O3' . G

#> label_asym_id label_entity_id label_seq_id pdbx_PDB_ins_code Cartn_x

#> 1 A 1 1 ? 23.989

#> 2 A 1 1 ? 24.965

#> 3 A 1 1 ? 25.937

#> 4 A 1 1 ? 26.741

#> 5 A 1 1 ? 25.259

#> 6 A 1 1 ? 24.868

#> Cartn_y Cartn_z occupancy B_iso_or_equiv pdbx_formal_charge auth_seq_id

#> 1 8.289 -15.135 1 0 ? 1

#> 2 9.100 -14.503 1 0 ? 1

#> 3 9.725 -15.512 1 0 ? 1

#> 4 8.744 -16.162 1 0 ? 1

#> 5 10.527 -16.627 1 0 ? 1

#> 6 11.838 -16.252 1 0 ? 1

#> auth_comp_id auth_asym_id auth_atom_id pdbx_PDB_model_num

#> 1 G A O5' 1

#> 2 G A C5' 1
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#> 3 G A C4' 1

#> 4 G A O4' 1

#> 5 G A C3' 1

#> 6 G A O3' 1

2.3 Bidirectional compatibility with bio3d

Using the cifPArser will often be the first step to analyse a structure. However, if the analisys
requires any of the bio3d functions, then a conversion should be done with the cifAsPDB

function.
pdb <- cifAsPDB(cif)

pdb

#>

#> Call: "1BAU"

#>

#> Total Models#: 1

#> Total Atoms#: 1486, XYZs#: 4458 Chains#: 2 (values: A B)

#>

#> Protein Atoms#: 0 (residues/Calpha atoms#: 0)

#> Nucleic acid Atoms#: 1486 (residues/phosphate atoms#: 46)

#>

#> Non-protein/nucleic Atoms#: 0 (residues: 0)

#> Non-protein/nucleic resid values: [ none ]

#>

#> Nucleic acid sequence:

#> GGCAAUGAAGCGCGCACGUUGCCGGCAAUGAAGCGCGCACGUUGCC

#>

#> + attr: atom, xyz, calpha, model, flag, call

It takes a CIF object and generates an equivalent pdb object (as used by all bio3d functions).
In addition, all veriNA3d functions are prepared to accept as input either the CIF or pdb
objects. Therefore, the compatibility between the two packages is bidirectional.
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3 Getting data from Application Programming Inter-
faces (API)

Getting data is the first step of any pipeline, and parsing files is just one of the many ways
data can be accessed. Application Programming Interfaces (API) are an intermediate point of
access to a remote database. APIs offer the users a series of endpoints or calls, which are
just links. Thus, instead of dealing directly with the database with SQL or other language,
the user can just use the appropriate call to send a query to the API, and it will return the
desired data.
In addition to parsing mmCIF files, veriNA3d also offers a series of functions to send queries
to different APIs. Since sending queries to remote APIs requires Internet access, the full
functionality of veriNA3d might depend on a good connection.
To see all the query functions, run:
?queryFunctions

IMPORTANT NOTE: The APIs accessed by veriNA3d are free of use with no limit of queries
per user. However, this could change if the users of the APIs use them irresponsibly. Servers
could eventually fall down if they receive more calls than they can actually process. To avoid
that, veriNA3d actually saves in memory the result of any query, and any time that you use
the same query again, it will take the cached result. To see this effect, run this test:
## Run a query for the first time, which will access the API

tech <- queryTechnique("4KQX", verbose=TRUE)

#> [1] "Querying: http://www.ebi.ac.uk/pdbe/api/pdb/entry/summary/4KQX"

#> [1] "Getting expType from API"

#> [1] "Saving expType in RAM"

## Run the same query for the second time, which will get it from memory

tech <- queryTechnique("4KQX", verbose=TRUE)

#> [1] "Querying: http://www.ebi.ac.uk/pdbe/api/pdb/entry/summary/4KQX"

#> [1] "Getting expType from RAM"

However, this is only saved across the current session of R, and any script that uses the query
functions will send them to the API every time it is run. VeriNA3d does not guarantee the
correct service of the APIs and it does not monitor any of your processes. However, the
API providers can known which IP address is querying their services at any time. To avoid
overloading the servers, please make a responsible use (e.g. save locally the data that you use
frequently).

3.1 Querying the EMBL-EBI REST API

An invaluable resource for structural & computational biologists is the PDBe REST API
(Velankar et al. 2015). Around this technology, the package includes the following set of
functions:

• queryAuthors: List of authors
• queryReldate: Release date
• queryDepdate: Deposition date
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• queryRevdate: Revision date
• queryDescription: Author description
• queryEntities: Entitity information
• queryFormats: File formats for the given ID
• queryModres: Modified residues
• queryLigands: Ligands in structure
• queryOrgLigands: Ligands in structure (substracting ions)
• queryResol: Resolution (if applicable)
• queryTechnique: Experimental Technique
• queryStatus: Released/Obsolete and related status information

The list of functions is intendedly limited in comparison with the dozens of enpoints of the
REST API. Integrating them all would innecessarily increase the total amount of functions of
the package. Moreover, the API might offer more and more endpoints with the time, and
trying to keep them all would make the manteinance of this package more difficult. To allow
the users to access their desired endpoints, an alternative method is provided.
The core of all the query functions is queryAPI, which integrates all the error-handling and
cache functionalities. With the queryAPI function, any user can design their own queries,
with a simple process. Herein a couple of examples.

3.1.1 Example 1

This snapshot shows the REST API website and a call that is not implemented in veriNA3d:
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The link of this endpoint is: https://www.ebi.ac.uk/pdbe/api/pdb/compound/summary/ATP
The queryAPI function can understand and send this query using the arguments ‘ID’, ‘API’,
‘string1’, and ‘string2’ properly:
atpsummary <- queryAPI(ID="ATP", API="ebi",

string1="pdb/compound/summary/", string2="")

str(atpsummary$ATP)

#> 'data.frame': 1 obs. of 15 variables:

#> $ smiles :List of 1

#> ..$ :'data.frame': 2 obs. of 3 variables:

#> .. ..$ program: chr "CACTVS" "OpenEye OEToolkits"

#> .. ..$ version: chr "3.341" "1.5.0"

#> .. ..$ name : chr "Nc1ncnc2n(cnc12)[C@@H]3O[C@H](CO[P@](O)(=O)O[P@@](O)(=O)O[P](O)(O)=O)[C@@H](O)[C@H]3O" "c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3)CO[P@@](=O)(O)O[P@](=O)(O)OP(=O)(O)O)O)O)N"

#> $ inchi_key : chr "ZKHQWZAMYRWXGA-KQYNXXCUSA-N"

#> $ name : chr "ADENOSINE-5'-TRIPHOSPHATE"

#> $ weight : num 507

#> $ chembl_id : chr "CHEMBL14249"

#> $ inchi : chr "InChI=1S/C10H16N5O13P3/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(26-10)1-25-30(21,22)28-31(23,24)27-29(18,19"| __truncated__

#> $ creation_date : chr "19990708"

#> $ chebi_id : int 15422

#> $ one_letter_code : chr "X"

#> $ revision_date : chr "20110604"

#> $ formal_charge : int 0

#> $ systematic_names :List of 1

#> ..$ :'data.frame': 2 obs. of 3 variables:

#> .. ..$ program: chr "ACDLabs" "OpenEye OEToolkits"

#> .. ..$ version: chr "10.04" "1.5.0"

#> .. ..$ name : chr "adenosine 5'-(tetrahydrogen triphosphate)" "[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy-phosphoryl] phosphono hydrogen phosphate"

#> $ subcomponent_occurrences:'data.frame': 1 obs. of 0 variables

#> $ formula : chr "C10 H16 N5 O13 P3"

#> $ stereoisomers :List of 1

#> ..$ :'data.frame': 1 obs. of 2 variables:

#> .. ..$ name : chr "9-{5-O-[(S)-hydroxy{[(R)-hydroxy(phosphonooxy)phosphoryl]oxy}phosphoryl]-beta-D-arabinofuranosyl}-9H-purin-6-amine"

#> .. ..$ chem_comp_id: chr "HEJ"

• The common root in all the REST API endpoints is “https://www.ebi.ac.uk/pdbe/api/”,
which is internally managed by the function by using API=“ebi”.

• The string1=“pdb/compound/summary/” indicates everything that comes after the
root and before the ID.

• The ID=“ATP” obviously represents the desired structure, either a 4 character string
for a pdbID or <= 3 character string for compounds.

• The string2=“” is also a necessary argument that reflects that nothing comes after the
ID.

3.1.2 Example 2

This snapshot shows a second call not implemented in veriNA3d:
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The link of this endpoint is: https://www.ebi.ac.uk/pdbe/api/pisa/noofinterfaces/3gcb/0
The proper call with queryAPI would be:
PISAsummary <- queryAPI(ID="3gcb", API="ebi",

string1="pisa/noofinterfaces/", string2="0")

str(PISAsummary$"3gcb")

#> List of 2

#> $ page_title :List of 6

#> ..$ resolution : num 1.87

#> ..$ spacegroup : chr "P 63 2 2"

#> ..$ structure_name: chr "PDB 3gcb"

#> ..$ title : chr "GAL6 (YEAST BLEOMYCIN HYDROLASE) MUTANT C73A/DELTAK454"

#> ..$ pdb_code : chr "3gcb"

#> ..$ assemble_code : chr "0"

#> $ number_of_interfaces: int 19

This second example shows a case in which the “string2” argument is necessary. If you are
unsure about the real link that is actually being constructed, you can always use verbose=TRUE
to see it printed.
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4 The εRMSD to compare structures

A new interesting metric to compare Nucleic Acid structures is the εRMSD (Bottaro, Di
Palma, and Bussi 2014), currently available in the BaRNAba python package (Bottaro et al.
2018). The metric was implented in the eRMSD function and completely reproduces BaRNAba
results for the structures tested.
The following example shows how to get the εRMSD between two models of the same
structure:
## Parse cif file

cif <- cifParser("2d18")

## Select a couple of models

model1 <- selectModel(cif=cif, model=1)

model3 <- selectModel(cif=cif, model=3)

## Calculate the eRMSD

eRMSD <- eRMSD(cif1=model1, cif2=model3)

eRMSD

#> [1] 0.3000208
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5 Generate substructures

In many cases you might be interested on a particular region of a structure (e.g. a peptide
from a complex, or a ligand and it’s binding site). For a given structure, trimSphere can
generate a smaller pdb object and save it to a PDB file if desired. The region of interest
can be selected by using the chain identifier and the residue index, or with the atom.select

function from bio3d (which in turn allows you to select regions of the structure in a variety of
ways). In addition to the region of interest, the function can also include the surrounding
region by seting a cutoff distance.

5.0.1 Example 1

## Parse human ribosome - takes around 12 seconds in R-3.5

cif <- cifParser("6ek0")

## Query entities and check them

ent <- queryEntities("6ek0")

head(ent[, c("entity_id", "molecule_name", "in_chains")])

#> entity_id molecule_name in_chains

#> 1 1 28S ribosomal RNA L5

#> 2 2 5S ribosomal RNA L7

#> 3 3 5.8S ribosomal RNA L8

#> 4 4 60S ribosomal protein L8 LA

#> 5 5 60S ribosomal protein L3 LB

#> 6 6 60S ribosomal protein L4 LC

## Generate a smaller pdb with the 60S ribosomal protein L8

chain <- "LA"

protL8 <- trimSphere(cif, chain=chain, cutoff=0)

protL8

#>

#> Call: trim.pdb(pdb = cif, eleno = outeleno)

#>

#> Total Models#: 1

#> Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)

#>

#> Protein Atoms#: 1898 (residues/Calpha atoms#: 248)

#> Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

#>

#> Non-protein/nucleic Atoms#: 0 (residues: 0)

#> Non-protein/nucleic resid values: [ none ]

#>

#> Protein sequence:

#> GRVIRGQRKGAGSVFRAHVKHRKGAARLRAVDFAERHGYIKGIVKDIIHDPGRGAPLAKV

#> VFRDPYRFKKRTELFIAAEGIHTGQFVYCGKKAQLNIGNVLPVGTMPEGTIVCCLEEKPG

#> DRGKLARASGNYATVISHNPETKKTRVKLPSGSKKVISSANRAVVGVVAGGGRIDKPILK

#> AGRAYHKYKAKRNCWPRVRGVAMNPVEHPFGGGNHQHIGKPSTIR...<cut>...LRGT

#>

#> + attr: atom, helix, sheet, seqres, xyz,
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#> calpha, call

## The same command with the argument file would save it directly:

protL8 <- trimSphere(cif, chain=chain, cutoff=0, file="output.pdb")

5.0.2 Example 2

To get the desired region of interest and its sorroundings, let’s see a second example using
the same structure:
## Load bio3d library

library(bio3d)

## Get pdb object from CIF

pdb <- cifAsPDB(cif)

## Get list of ligands in the human ribosome 6EK0

queryLigands("6ek0", onlyligands=T)

#> [1] "MG" "HMT" "ZN" "HYG"

## Get the atomic index for a desired ligand

HMTligand_inds <- which(pdb$atom$resid == "HMT")

## Use bio3d function to select the ligand using its atom indices

sel <- atom.select(pdb, eleno=HMTligand_inds)

## Get substructure and sorroundings at 10 Angstroms

HTMligand <- trimSphere(pdb, sel=sel, cutoff=5)

#> [1] "Computing distances ..."

#> [1] " ... done"

#> [1] "Finding the atom details ..."

#> [1] " ... done, the output is coming"

5.0.3 Example 3

A third useful example would be the generation of a pdb with the interacting region between
two molecules in the structure. To achieve the goal, veriNA3d also counts with the findBind

ingSite function, as shown below:
## Parse another pdb for this example

pdb <- cifAsPDB("1nyb")

## Find region of interaction between RNA and protein

data <- findBindingSite(pdb, select="RNA", byres=TRUE)

## Get atom indices from interacting region molecules

eleno <- append(data$eleno_A, data$eleno_B)

## Select using bio3d
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sel <- atom.select(pdb, eleno=eleno)

## Get substructure

trimSphere(pdb, sel=sel, file="interacting_site.pdb", verbose=FALSE)
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6 Manage Nucleic Acid datasets

Get Leontis list, change representative structures and analyse them with one of the pipelines
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