Aebersold, R., and Goodlett, D.R. (2001). Mass spectrometry in proteomics. Chem. Rev. 101, 269-295.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215,403-410
Amadei, A., Linssen, A.B., and Berendsen, H.J. (1993). Essential dynamics of proteins. Proteins 17, 412-425.
Andricioaei, I., and Karplus, M. (2001). On the calculation of entropy from covariance matrices of the atomic fluctuations. J. Chem. Phys. 115, 6289-6292.
Bahar, I., and Rader, A. J. (2005) Coarse-grained normal mode analysis in structural biology. Curr. Opinion Struct. Biol. 15(5), 586-592
Beck, D.A.C., Alonso, D.O.V., Inoyama, D., and Daggett,V. (2008a). The intrinsic conformational propensities of the 20 naturally occurring amino acids and relfection of these propensities in proteins. Proc. Natl. Acad. Sci. USA, 105, 12259-12264.
Beck, D.A.C., Jonsson, A.L., Schaefer, R.D., Scott, K.A., Day, R., Toofanny, R.D., Alonso, D.O.V., and Daggett,V. (2008b) Dynameomics: Mass annotation of protein dynamics and unfolding in water by high-throughput atomistic molecular dynamics simulations. Protein Eng. Des. Sel., 21, 2038-2050.
Benesch, J.L., and Robinson, C.V. (2006). Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr. Opin. Struct. Biol. 16, 245-251.
Benson,N.C., and Daggett,V. (2008). Dynameomics: Large-scale assessment of native protein flexibility. Protein Sci., 17, 353-368.
Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N. , Weissig, H., Shindyalov, I.N. , and Bourne, P.E. (2000) The Protein Data Bank. Nucleic Acids Research, 28, 235-242.
BioMoby Consortium, (2008) Interoperability with Moby 1.0--it's better than sharing your toothbrush! Brief Bioinform. 9(3), 220-231
Brooks III, C. L., Karplus, M. et al. (1987). Proteins: A theoretical Perspective of Dynamics, Structure and Thermodynamics. Cambridge, Cambridge University Press.
Camps, J., Carrillo, O., Emperador, A., Orellana, L., Hospital, A., Rueda, M., Cicin-Sain, D., D'Abramo, M., Gelpí, J.L., and Orozco, M. (2009) FlexServ: an integrated tool for the analysis of protein flexibility. Bioinformatics. 25(13), 1709-1710
Carrillo, O., and Orozco, M. (2008) GRID-based molecular dynamics. A Tool for genomic-scale simulations of channels in proteins. Proteins. 70, 892-899.
Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham III, T.E., Ross, W.S., Simmerling, C.L., Darden, T.L., Marz, K.M., Stanton, R.V., Cheng, A.L., et al. (2004) AMBER 8
Cornell,W.D, Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., and Kollman, P.A. (1995) A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc., 117, 5179–5197.
Daniel, R.M., Dumm, R.V., Finney, J.L., and Smith, J.C. (2003) The role of dynamics in enzyme activity. Annual Review Biophysics and Biomolecular Structure 32, 69-92
Darden, T., York, D., and Pedersen, L. (1993) Particle Mesh Ewald-an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98, 10089-10092
Day, R., Beck, D.A.C., Armen, R.S., Dagget,V. (2003) A consensus view of fold space: Combining SCOP, CATH and the Dali Domain Dictionary, Protein Sci, 12, 2150-2160.
Emperador, A., Carrillo, O., Rueda, M., and Orozco, M. (2008a) Exploring the suitability of coarse-grained techniques for the representation of protein dynamics. Biophys J, 95(5), 2127-2138
Emperador, A., Meyer, T., and Orozco, M. (2008b) United-atom discrete molecular dynamics of proteins using physics-based potentials. J.Chem.Theor.Comput., 4, 2001-2010
Fernández-Recio, J., Totrov, M., Skorodumov, C., and Abagyan, R. (2005) Optimal Docking Area: a new method for predicting protein-protein interaction sites. Proteins 58, 134-143
Finn, R.D. Tate, J., Mistry, J., Coggill, P.C., Sammut, J.S., Hotz, H.R., Ceric, G., Forslund, K. , Eddy, S.R., Sonnhammer, E.L., and A. Bateman (2008). The PFAM protein families databases. Nucleic Acids Research. Database Issue 36, D281-D288
Gelpí, J.L., Kalko, S.G., Barril, X., Cirera, J., de La Cruz, X., Luque, F.J., and Orozco, M. (2001) Classical molecular interaction potentials: improved setup procedure molecular dynamics simulations of proteins. Proteins. 45(4), 428-437
Goldstein, R.A. (2008) The structure of protein evolution and the evolution of protein structure. Curr Opin Struct Biol 18, 170-177
Hubbard,S.J.and Thornton, J.M. (1993), 'NACCESS', Computer Program, Department of Biochemistry and Molecular Biology, University College London.
Harris, S.A., Gavathiotis, E., Searle, M.S., Orozco, M., and Laughton, C.A. (2001). Cooperativity in drug-DNA recognition: a molecular dynamics study. J. Am. Chem. Soc. 123, 12658-12663.
Henzler-Wildman, K.A., Lei, M., Thai, V., Kerns, S.J., Karplus, M., and Kern D. (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature. 450, 913-916
Hermans,J., Berendsen, H.J.C., Van Gunsteren,W.F., Postma, J.P.M. (1984) A consistent empirical potential for water-protein interactions. Biopolymers, 23(8), 1513-1518
Hess, B., van der Spoel, D., and Lindahl, E. (2008) GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput., 4(3), 435–447
Johnson, A.L., Scott, K.A., and Daggett,V. (2009). Dynameomics: A consensus view of the protein folding/unfolding transition state ensemble across a diverse set of protein folds. Biophys J., 97, 2958-2966.
Jorgensen,W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983) J.Chem.Phys, 79, 926-935.
Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J. (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236
Kabsch W. "A solution for the best rotation to relate two sets of vectors". Acta Crystallogr. (1976), A32:922-923
Kabsch, W., and Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637.
Karplus, M., and Kuriyan, J. (2005) Molecular dynamics and protein function. Proc. Natl. Acad. Sci. 102, 6679-6685
Kuhlman, B., and Baker, D. (2000) Native protein sequences are close to optimal for their structures. Proc Natl Acad Sci USA. 97, 10383-10388
Leo-Macias, A., Lopez-Romero, P., Lupyan, D., Zerbino, D., andOrtiz, A.R. (2005) An analysis of core deformations in protein superfamilies. Biophys J 88,1291-1299
Lindorff-Larsen, K., Best, R.B., Depristo, M.A., Dobson, C. M.,Vendruscolo, M. (2005) Simultaneous determination of protein structure and dynamics. Nature, 433, 128-132
Ma, J., and Karplus, M. (1998) The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. Proc Natl Acad Sci USA 95, 8502-8507
McCammon, J.A., Gelin, B.R., and Karplus, M. (1977) Dynamics of folded proteins. Nature, 267, 585-590
McKerell Jr.A., Wiorkiewicz-Kuczera, J. and Karplus, M. (1995) An all-atom empirical energy function for the simulation of nucleic acids. J. Am. Chem. Soc., 117 (48), 11946–11975
McKerell, A. et al., (1998) All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins J. Phys. Chem.B., 102, 3586-1616
Meyer, T., Ferrer-Costa, C., Pérez, A., Rueda, A., Bidon-Chanal, A., Luque, F.J., Laughton, C.A, and Orozco M. (2006) Essential Dynamics: A Tool for Efficient Trajectory Compression and Management. J. Chem.Theor.Comput 2, 251-258
Meyer, T., de la Cruz, X., and Orozco, M. (2009) An atomistic view to the gas phase proteome. Structure. 17(1), 88-95
Murzin A. G., Brenner S. E., Hubbard T., Chothia C. (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536-540
Neutze, R., Huldt, G., Hajdu, J., and van der Spoel, D. (2004). Potential impact of an X-ray free electron laser on structural biology. Radiat. Phys. Chem. 71, 905-916.
Ng, M.H., Johnston, S., Wu, B., Murdock, S.E., Tai, K.H., Fangohr, H., Cox, S.J., Essex, J.W., Sansom, M.S.P., and Jeffreys, P. (2006). BioSimGrid: Grid-enabled biomolecular simulation data storage and analysis. Future Generation Computer Systems, 22, 657-664.
Noy, A., Meyer, T., Rueda, M., Ferrer, C., Valencia, A., Perez, A., de la Cruz, X., Lopez-Bes, J.M., Pouplana, R., Fernández-Recio, J., Luque, F.J., and Orozco, M. (2006) Data mining of molecular dynamics trajectories of nucleic acids. J Biomol Struct Dyn.23, 447-456
Orozco, M., and Luque, F.J. (2000) Theoretical methods for the description of the solvent effect in biomolecular systems. Chem. Rev. 100, 4187-4226
Orozco, M., Pérez, A., Noy, A., and Luque, F.J. (2003) Theoretical methods for the simulation of nucleic acids”. Chem.Soc.Rev. 32, 350-364
Ott K.H., and Meyer, B. (1996) Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations J. Comp. Chem. 17, 1068-1084
Pearl, F., Bennett,C., and Orengo,C.A. (2004). The CATH Domain Structure Database. in Hancock, J.M., Zvelebil, M.J. (ed.) Dictionary of Bioinformatics and Computational Biology. Wiley. ISBN: 0-471-43622-4
Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26, 1781-1802
Qian, B., Ortiz, A.R., and Baker, D. (2004) Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. Proc Natl Acad Sci USA 101, 15346-15351
Rueda, M., Chacón, P., and Orozco, M. (2007a) Thorough validation of protein normal mode analysis: a comparative study with essential dynamicsStructure, 15(5), 565-575
Rueda, M., Ferrer-Costa, C., Meyer, T., Pérez, A., Camps, J., Hospital, A., Gelpí, J.L., and Orozco, M. (2007b) A consensus view of protein dynamics. Proc Natl Acad Sci U S A. 104(3), 796-801
Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C. (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes J Comput Phys 23, 327-341
Schlitter, J. (1993). Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem. Phys. Lett. 215, 617-621.
The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25-29
The UniProt Consortium. (2010). The Universal Protein Resource (UniProt) in 2010. Nucleic Acids. Res., 40, D142-148.
Tirion, M.M. (1996). Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77, 1905–1908
Tozzini, V. (2005) Coarse-grained models for proteins. Curr. Opinion Struct. Biol 15, 144-150
Velazquez-Muriel, J.A., Rueda, M., Cuesta, I., Pascual-Montano, A., Orozco, M., and Carazo, J.M. (2009) Comparison of molecular dynamics and superfamily spaces of protein domain deformation. BMC Struct Biol 17, 9(1):6.
Wang, J., Wang, W., Kollman P. A.; and Case, D. A. (2006) Automatic atom type and bond type perception in molecular mechanical calculations". Journal of Molecular Graphics and Modelling, 25, 247-260.
Wishart, D.S., Knox, C., Guo, A.C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., Woolsey, J. (2006). DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34 (Database issue), D668-D672.
Yang, Lz., Song, G., and Jernigan, R.L. (2009) Protein elastic network models and the ranges of cooperativity. Proc Natl Acad Sci USA 106(30), 12347-12352
Zhang, Y. and Skolnick J. (2004) Scoring function for automated assessment of protein structure template quality. Proteins. 57(4), 702 - 710
Zhou,W., Vitkup,D., and Karplus, M. (1999) J. Mol. Biol., 285, 1371-1375.