Enzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase.

TitleEnzyme-directed mutasynthesis: a combined experimental and theoretical approach to substrate recognition of a polyketide synthase.
Publication TypeJournal Article
Year of Publication2013
AuthorsSundermann, Uschi, Bravo-Rodriguez Kenny, Klopries Stephan, Kushnir Susanna, Gómez Hansel, Sanchez-Garcia Elsa, and Schulz Frank
JournalACS Chem Biol
Volume8
Pagination443-50
Date Published2013 Feb 15
ISSN1554-8937
KeywordsAcyltransferases, Biological Products, Erythromycin, Malonates, Models, Molecular, Molecular Dynamics Simulation, Molecular Structure, Point Mutation, Polyketide Synthases, Protein Engineering, Saccharopolyspora, Substrate Specificity
Abstract

Acyltransferase domains control the extender unit recognition in Polyketide Synthases (PKS) and thereby the side-chain diversity of the resulting natural products. The enzyme engineering strategy presented here allows the alteration of the acyltransferase substrate profile to enable an engineered biosynthesis of natural product derivatives through the incorporation of a synthetic malonic acid thioester. Experimental sequence-function correlations combined with computational modeling revealed the origins of substrate recognition in these PKS domains and enabled a targeted mutagenesis. We show how a single point mutation was able to direct the incorporation of a malonic acid building block with a non-native functional group into erythromycin. This approach, introduced here as enzyme-directed mutasynthesis, opens a new field of possibilities beyond the state of the art for the combination of organic chemistry and biosynthesis toward natural product analogues.

DOI10.1021/cb300505w